Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I 3073
Austrian Science Fund FWF - Austria
882184
Österreichische Forschungsförderungsgesellschaft
3073
Austrian Science Fund
19-16066S
Grantová Agentura České Republiky
PubMed
33440777
PubMed Central
PMC7826740
DOI
10.3390/e23010096
PII: e23010096
Knihovny.cz E-zdroje
- Klíčová slova
- Lagrange multipliers, MaxEnt distribution, calibration invariance, maximum entropy principle,
- Publikační typ
- časopisecké články MeSH
The maximum entropy principle consists of two steps: The first step is to find the distribution which maximizes entropy under given constraints. The second step is to calculate the corresponding thermodynamic quantities. The second part is determined by Lagrange multipliers' relation to the measurable physical quantities as temperature or Helmholtz free energy/free entropy. We show that for a given MaxEnt distribution, the whole class of entropies and constraints leads to the same distribution but generally different thermodynamics. Two simple classes of transformations that preserve the MaxEnt distributions are studied: The first case is a transform of the entropy to an arbitrary increasing function of that entropy. The second case is the transform of the energetic constraint to a combination of the normalization and energetic constraints. We derive group transformations of the Lagrange multipliers corresponding to these transformations and determine their connections to thermodynamic quantities. For each case, we provide a simple example of this transformation.
Zobrazit více v PubMed
Jaynes E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957;106:620. doi: 10.1103/PhysRev.106.620. DOI
Jaynes E.T. Information Theory and Statistical Mechanics. II. Phys. Rev. 1957;108:171. doi: 10.1103/PhysRev.108.171. DOI
Burg J.P. The relationship between maximum entropy spectra and maximum likelihood spectra. Geophysics. 1972;37:375–376. doi: 10.1190/1.1440265. DOI
Rényi A. Selected Papers of Alfréd Rényi. Volume 2 Akademia Kiado; Budapest, Hungary: 1976.
Havrda J.H., Charvát F. Quantification Method of Classification Processes. Concept of Structural α-Entropy. Kybernetika. 1967;3:30–35.
Sharma B.D., Mitter J., Mohan M. On Measures of “Useful” Information. Inf. Control. 1978;39:323–336. doi: 10.1016/S0019-9958(78)90671-X. DOI
Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988;52:479–487. doi: 10.1007/BF01016429. DOI
Frank T., Daffertshofer A. Exact time-dependent solutions of the Renyi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal. Physica A. 2000;285:351–366. doi: 10.1016/S0378-4371(00)00178-3. DOI
Kaniadakis G. Statistical mechanics in the context of special relativity. Phys. Rev. E. 2002;66:056125. doi: 10.1103/PhysRevE.66.056125. PubMed DOI
Jizba P., Arimitsu T. The world according to Rényi: Thermodynamics of multifractal systems. Ann. Phys. 2004;312:17–59. doi: 10.1016/j.aop.2004.01.002. DOI
Hanel R., Thurner S. A comprehensive classification of complex statistical systems and an ab-initio derivation of their entropy and distribution functions. Europhys. Lett. 2011;93:20006. doi: 10.1209/0295-5075/93/20006. DOI
Thurner S., Hanel R., Klimek P. Introduction to the Theory of Complex Systems. Oxford University Press; Oxford, UK: 2018.
Korbel J., Hanel R., Thurner S. Classification of complex systems by their sample-space scaling exponents. New J. Phys. 2018;20:093007. doi: 10.1088/1367-2630/aadcbe. DOI
Tempesta P., Jensen H.J. Universality classes and information-theoretic Measures of complexity via Group entropies. Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-020-60188-y. PubMed DOI PMC
Ilić V.M., Stankovixcx M.S. Generalized Shannon-Khinchin axioms and uniqueness theorem for pseudo-additive entropies. Physica A. 2014;411:138–145. doi: 10.1016/j.physa.2014.05.009. DOI
Ilić V.M., Scarfone A.M., Wada T. Equivalence between four versions of thermostatistics based on strongly pseudoadditive entropies. Phys. Rev. E. 2019;100:062135. doi: 10.1103/PhysRevE.100.062135. PubMed DOI
Czachor M. Unifying Aspects of Generalized Calculus. Entropy. 2020;22:1180. doi: 10.3390/e22101180. PubMed DOI PMC
Beck C., Schlögl F. Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press; Cambridge, UK: 1993.
Abe S. Geometry of escort distributions. Phys. Rev. E. 2003;68:031101. doi: 10.1103/PhysRevE.68.031101. PubMed DOI
Bercher J.-F. On escort distributions, q-gaussians and Fisher information. AIP Conf. Proc. 2011;1305:208.
Czachor M., Naudts J. Thermostatistics based on Kolmogorov-Nagumo averages: Unifying framework for extensive and nonextensive generalizations. Phys. Lett. A. 2002;298:369–374. doi: 10.1016/S0375-9601(02)00540-6. DOI
Scarfone A.M., Matsuzoe H., Wada T. Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average. Phys. Lett. A. 2016;380:3022–3028. doi: 10.1016/j.physleta.2016.07.012. DOI
Bercher J.-F. Tsallis distribution as a standard maximum entropy solution with ‘tail’ constraint. Phys. Lett. A. 2008;372:5657–5659. doi: 10.1016/j.physleta.2008.06.088. DOI
Pressé S., Ghosh K., Lee J., Dill K.A. Nonadditive Entropies Yield Probability Distributions with Biases not Warranted by the Data. Phys. Rev. Lett. 2013;111:180604. doi: 10.1103/PhysRevLett.111.180604. PubMed DOI
Oikonomou T., Bagci B. Misusing the entropy maximization in the jungle of generalized entropies. Phys. Lett. A. 2017;381:207–211. doi: 10.1016/j.physleta.2016.11.005. DOI
Tsallis C., Mendes R.S., Plastino A.R. The role of constraints within generalized nonextensive statistics. Phys. A. 1998;286:534–554. doi: 10.1016/S0378-4371(98)00437-3. DOI
Martínez S., Nicolás F., Peninni F., Plastino A. Tsallis’ entropy maximization procedure revisited. Phys. A. 2000;286:489–502. doi: 10.1016/S0378-4371(00)00359-9. DOI
Plastino A., Plastino A.R. On the universality of thermodynamics’ Legendre transform structure. Phys. Lett. A. 1997;226:257–263. doi: 10.1016/S0375-9601(96)00942-5. DOI
Rama S.K. Tsallis Statistics: Averages and a Physical Interpretation of the Lagrange Multiplier β. Phys. Lett. A. 2000;276:103–108. doi: 10.1016/S0375-9601(00)00634-4. DOI
Campisi M., Bagci G.B. Tsallis Ensemble as an Exact Orthode. Phys. Lett. A. 2007;362:11–15. doi: 10.1016/j.physleta.2006.09.081. DOI
Dixit P.D., Wagoner J., Weistuch C., Pressé S., Ghosh K., Dill K.A. Perspective: Maximum caliber is a general variational principle for dynamical systems. J. Chem. Phys. 2018;148:010901. doi: 10.1063/1.5012990. PubMed DOI
Lucia U. Stationary Open Systems: A Brief Review on Contemporary Theories on Irreversibility. Physica A. 2013;392:1051–1062. doi: 10.1016/j.physa.2012.11.027. DOI
Palazzo P. Hierarchical Structure of Generalized Thermodynamic and Informational Entropy. Entropy. 2018;20:553. doi: 10.3390/e20080553. PubMed DOI PMC
Shore J.E., Johnson R.W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theor. 1980;26:26–37. doi: 10.1109/TIT.1980.1056144. DOI
Shore J.E., Johnson R.W. Properties of cross-entropy minimization. IEEE Trans. Inf. Theor. 1981;27:472–482. doi: 10.1109/TIT.1981.1056373. DOI
Uffink J. Can the maximum entropy principle be explained as a consistency requirement? Stud. Hist. Philos. Mod. Phys. 1995;26:223–261. doi: 10.1016/1355-2198(95)00015-1. DOI
Tsallis C. Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems. Entropy. 2015;17:2853–2861. doi: 10.3390/e17052853. DOI
Pressé S., Ghosh K., Lee J., Dill K.A. Reply to C. Tsallis’ “Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems”. Entropy. 2015;17:5043–5046. doi: 10.3390/e17075043. DOI
Oikonomou T., Bagci G.B. Rényi entropy yields artificial biases not in the data and incorrect updating due to the finite-size data. Phys. Rev. E. 2019;99:032134. doi: 10.1103/PhysRevE.99.032134. PubMed DOI
Jizba P., Korbel J. Comment on “Rényi entropy yields artificial biases not in the data and incorrect updating due to the finite-size data”. Phys. Rev. E. 2019;100:026101. doi: 10.1103/PhysRevE.100.026101. PubMed DOI
Oikonomou T., Bagci G.B. Reply to “Comment on Rényi entropy yields artificial biases not in the data and incorrect updating due to the finite-size data”. Phys. Rev. E. 2019;100:026102. doi: 10.1103/PhysRevE.100.026102. PubMed DOI
Jizba P., Korbel J. Maximum Entropy Principle in Statistical Inference: Case for Non-Shannonian Entropies. Phys. Rev. Lett. 2019;122:120601. doi: 10.1103/PhysRevLett.122.120601. PubMed DOI
Jizba P., Korbel J. When Shannon and Khinchin meet Shore and Johnson: Equivalence of information theory and statistical inference axiomatics. Phys. Rev. E. 2020;101:042126. doi: 10.1103/PhysRevE.101.042126. PubMed DOI
Plastino A., Plastino A.R. Tsallis Entropy and Jaynes’ Information Theory Formalism. Braz. J. Phys. 1999;29:50–60. doi: 10.1590/S0103-97331999000100005. DOI
Naudts J. Generalized Thermostatistics. Springer; London, UK: 2011.
Biró T.S., Ván P. Zeroth law compatibility of nonadditive thermodynamics. Phys. Rev. E. 2011;83:061147. doi: 10.1103/PhysRevE.83.061147. PubMed DOI
Wada T., Scarfone A.M. Connections between Tsallis’ formalisms employing the standard linear average energy and ones employing the normalized q-average energy. Phys. Lett. A. 2005;335:351–362. doi: 10.1016/j.physleta.2004.12.054. DOI
The Statistical Foundations of Entropy