NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
K01 AR073332
NIAMS NIH HHS - United States
PubMed
39188529
PubMed Central
PMC11345137
DOI
10.3389/fcell.2024.1432668
PII: 1432668
Knihovny.cz E-zdroje
- Klíčová slova
- NADPH oxidase, ROS, bone fragility, bone marrow adipose tissue, bone marrow stromal cells, obesity, senescence,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.
Faculty of Science Charles University Prague Czechia
Human Nutrition Foods and Exercise Virginia Tech Blacksburg VA United States
Translational Biology Medicine and Health Virginia Tech Roanoke VA United States
Zobrazit více v PubMed
Agidigbi T. S., Kim C. (2019). Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int. J. Mol. Sci. 20, 3576. 10.3390/ijms20143576 PubMed DOI PMC
Alekos N. S., Kushwaha P., Kim S. P., Li Z., Abood A., Dirckx N., et al. (2023). Mitochondrial β-oxidation of adipose-derived fatty acids by osteoblasts fuels parathyroid hormone-induced bone formation. JCI Insight 8, e165604. 10.1172/jci.insight.165604 PubMed DOI PMC
Ali D., Chen L., Kowal J. M., Okla M., Manikandan M., AlShehri M., et al. (2020). Resveratrol inhibits adipocyte differentiation and cellular senescence of human bone marrow stromal stem cells. Bone 133, 115252. 10.1016/j.bone.2020.115252 PubMed DOI
Atashi F., Modarressi A., Pepper M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 24, 1150–1163. 10.1089/scd.2014.0484 PubMed DOI PMC
Bai X. C., Lu D., Bai J., Zheng H., Ke Z. Y., Li X. M., et al. (2004). Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem. Biophys. Res. Commun. 314, 197–207. 10.1016/j.bbrc.2003.12.073 PubMed DOI
Balogh E., Tolnai E., Nagy B., Jr., Nagy B., Balla G., Balla J., et al. (2016). Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochim. Biophys. Acta 1862, 1640–1649. 10.1016/j.bbadis.2016.06.003 PubMed DOI
Beckman K. B., Ames B. N. (1998). The free radical theory of aging matures. Physiol. Rev. 78, 547–581. 10.1152/physrev.1998.78.2.547 PubMed DOI
Beekman K. M., Duque G., Corsi A., Tencerova M., Bisschop P. H., Paccou J. (2023). Osteoporosis and bone marrow adipose tissue. Curr. Osteoporos. Rep. 21, 45–55. 10.1007/s11914-022-00768-1 PubMed DOI
Beekman K. M., Regenboog M., Nederveen A. J., Bravenboer N., den Heijer M., Bisschop P. H., et al. (2022). Gender- and age-associated differences in bone marrow adipose tissue and bone marrow fat unsaturation throughout the skeleton, quantified using chemical shift encoding-based water-fat MRI. Front. Endocrinol. (Lausanne) 13, 815835. 10.3389/fendo.2022.815835 PubMed DOI PMC
Benova A., Tencerova M. (2020). Obesity-induced changes in bone marrow homeostasis. Front. Endocrinol. (Lausanne) 11, 294. 10.3389/fendo.2020.00294 PubMed DOI PMC
Bernard K., Logsdon N. J., Miguel V., Benavides G. A., Zhang J., Carter A. B., et al. (2017). NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J. Biol. Chem. 292, 3029–3038. 10.1074/jbc.m116.752261 PubMed DOI PMC
Bianco P., Riminucci M., Gronthos S., Robey P. G. (2001). Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192. 10.1634/stemcells.19-3-180 PubMed DOI
Brown D. I., Griendling K. K. (2009). Nox proteins in signal transduction. Free Radic. Biol. Med. 47, 1239–1253. 10.1016/j.freeradbiomed.2009.07.023 PubMed DOI PMC
Chen J. R., Lazarenko O. P., Blackburn M. L., Chen J. F., Randolph C. E., Zabaleta J., et al. (2022). Nox4 expression in osteo-progenitors controls bone development in mice during early life. Commun. Biol. 5, 583. 10.1038/s42003-022-03544-0 PubMed DOI PMC
Chen K., Kirber M. T., Xiao H., Yang Y., Keaney J. F., Jr. (2008). Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol. 181, 1129–1139. 10.1083/jcb.200709049 PubMed DOI PMC
Chen X., Wang Z., Duan N., Zhu G., Schwarz E. M., Xie C. (2018). Osteoblast-osteoclast interactions. Connect. Tissue Res. 59, 99–107. 10.1080/03008207.2017.1290085 PubMed DOI PMC
Czech M. P. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814. 10.1038/nm.4350 PubMed DOI PMC
Darden A. G., Ries W. L., Wolf W. C., Rodriguiz R. M., Key L. L., Jr. (1996). Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J. Bone Min. Res. 11, 671–675. 10.1002/jbmr.5650110515 PubMed DOI
Del Fattore A., Capannolo M., Rucci N. (2010). Bone and bone marrow: the same organ. Arch. Biochem. Biophys. 503, 28–34. 10.1016/j.abb.2010.07.020 PubMed DOI
Deng S., Dai G., Chen S., Nie Z., Zhou J., Fang H., et al. (2019). Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed. Pharmacother. 110, 602–608. 10.1016/j.biopha.2018.11.103 PubMed DOI
Den Hartigh L. J., Omer M., Goodspeed L., Wang S., Wietecha T., O'Brien K. D., et al. (2017). Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler. Thromb. Vasc. Biol. 37, 466–475. 10.1161/ATVBAHA.116.308749 PubMed DOI PMC
Di Bernardo G., Messina G., Capasso S., Del Gaudio S., Cipollaro M., Peluso G., et al. (2014). Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells. Stem Cell Res. Ther. 5, 4. 10.1186/scrt393 PubMed DOI PMC
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317. 10.1080/14653240600855905 PubMed DOI
Farr J. N., Xu M., Weivoda M. M., Monroe D. G., Fraser D. G., Onken J. L., et al. (2017). Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079. 10.1038/nm.4385 PubMed DOI PMC
Finkel T. (2011). Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15. 10.1083/jcb.201102095 PubMed DOI PMC
Forrester S. J., Kikuchi D. S., Hernandes M. S., Xu Q., Griendling K. K. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902. 10.1161/circresaha.117.311401 PubMed DOI PMC
Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., et al. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest 114, 1752–1761. 10.1172/jci21625 PubMed DOI PMC
Gautam J., Khedgikar V., Kushwaha P., Choudhary D., Nagar G. K., Dev K., et al. (2017). Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss. Br. J. Nutr. 117, 645–661. 10.1017/S0007114517000149 PubMed DOI
Goettsch C., Babelova A., Trummer O., Erben R. G., Rauner M., Rammelt S., et al. (2013). NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J. Clin. Invest 123, 4731–4738. 10.1172/JCI67603 PubMed DOI PMC
Guimaraes G. C., Coelho J. B. C., Silva J. G. O., de Sant'Ana A. C. C., de Sa C. A. C., Moreno J. M., et al. (2023). Obesity, diabetes and risk of bone fragility: how BMAT behavior is affected by metabolic disturbances and its influence on bone health. Osteoporos. Int. 35, 575–588. 10.1007/s00198-023-06991-5 PubMed DOI
Guntur A. R., Gerencser A. A., Le P. T., DeMambro V. E., Bornstein S. A., Mookerjee S. A., et al. (2018). Osteoblast-like mc3t3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J. Bone Min. Res. 33, 1052–1065. 10.1002/jbmr.3390 PubMed DOI PMC
Ha H., Kwak H. B., Lee S. W., Jin H. M., Kim H. M., Kim H. H., et al. (2004). Reactive oxygen species mediate RANK signaling in osteoclasts. Exp. Cell Res. 301, 119–127. 10.1016/j.yexcr.2004.07.035 PubMed DOI
Halade G. V., El Jamali A., Williams P. J., Fajardo R. J., Fernandes G. (2011). Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp. Gerontol. 46, 43–52. 10.1016/j.exger.2010.09.014 PubMed DOI PMC
Han J., Park D., Park J. Y., Han S. (2022). Inhibition of NADPH oxidases prevents the development of osteoarthritis. Antioxidants (Basel) 11, 2346. 10.3390/antiox11122346 PubMed DOI PMC
Hardouin P., Rharass T., Lucas S. (2016). Bone marrow adipose tissue: to Be or not to Be a typical adipose tissue? Front. Endocrinol. (Lausanne) 7, 85. 10.3389/fendo.2016.00085 PubMed DOI PMC
Herrmann M. (2019). Marrow fat-secreted factors as biomarkers for osteoporosis. Curr. Osteoporos. Rep. 17, 429–437. 10.1007/s11914-019-00550-w PubMed DOI PMC
Houschyar K. S., Tapking C., Borrelli M. R., Popp D., Duscher D., Maan Z. N., et al. (2018). Wnt pathway in bone repair and regeneration - what do we know so far. Front. Cell Dev. Biol. 6, 170. 10.3389/fcell.2018.00170 PubMed DOI PMC
Iantomasi T., Romagnoli C., Palmini G., Donati S., Falsetti I., Miglietta F., et al. (2023). Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. Int. J. Mol. Sci. 24, 3772. 10.3390/ijms24043772 PubMed DOI PMC
Jones D. P. (2006). Redefining oxidative stress. Antioxid. Redox Signal 8, 1865–1879. 10.1089/ars.2006.8.1865 PubMed DOI
Joo J. H., Huh J. E., Lee J. H., Park D. R., Lee Y., Lee S. G., et al. (2016). A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci. Rep. 6, 22389. 10.1038/srep22389 PubMed DOI PMC
Kajla S., Mondol A. S., Nagasawa A., Zhang Y., Kato M., Matsuno K., et al. (2012). A crucial role for Nox 1 in redox-dependent regulation of Wnt-β-catenin signaling. FASEB J. 26, 2049–2059. 10.1096/fj.11-196360 PubMed DOI
Kim J. H., Song S. Y., Park S. G., Song S. U., Xia Y., Sung J. H. (2012). Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cells Dev. 21, 2212–2221. 10.1089/scd.2011.0561 PubMed DOI PMC
Kim M. J., Kim H. J., Hong Y. H., Lee C. K., Kim Y. W., Shon O. J., et al. (2015). Age-related NADPH oxidase (arNOX) activity correlated with cartilage degradation and bony changes in age-related osteoarthritis. J. Korean Med. Sci. 30, 1246–1252. 10.3346/jkms.2015.30.9.1246 PubMed DOI PMC
Koundouros N., Poulogiannis G. (2018). Phosphoinositide 3-kinase/akt signaling and redox metabolism in cancer. Front. Oncol. 8, 160. 10.3389/fonc.2018.00160 PubMed DOI PMC
Kricun M. E. (1985). Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skelet. Radiol. 14, 10–19. 10.1007/BF00361188 PubMed DOI
Lanske B., Rosen C. (2017). Bone marrow adipose tissue: the first 40 years. J. Bone Min. Res. 32, 1153–1156. 10.1002/jbmr.3140 PubMed DOI PMC
Lecka-Czernik B., Stechschulte L. A., Czernik P. J., Sherman S. B., Huang S., Krings A. (2017). Marrow adipose tissue: skeletal location, sexual dimorphism, and response to sex steroid deficiency. Front. Endocrinol. (Lausanne) 8, 188. 10.3389/fendo.2017.00188 PubMed DOI PMC
Lee C. F., Qiao M., Schroder K., Zhao Q., Asmis R. (2010). Nox4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death. Circ. Res. 106, 1489–1497. 10.1161/CIRCRESAHA.109.215392 PubMed DOI PMC
Li D., Zhang R., Zhu W., Xue Y., Zhang Y., Huang Q., et al. (2013). S100A16 inhibits osteogenesis but stimulates adipogenesis. Mol. Biol. Rep. 40, 3465–3473. 10.1007/s11033-012-2413-2 PubMed DOI
Li G. W., Xu Z., Chen Q. W., Tian Y. N., Wang X. Y., Zhou L., et al. (2014). Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water-fat separation. Clin. Radiol. 69, 254–262. 10.1016/j.crad.2013.10.005 PubMed DOI
Li Z., Bowers E., Zhu J., Yu H., Hardij J., Bagchi D. P., et al. (2022). Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. Elife 11, e78496. 10.7554/eLife.78496 PubMed DOI PMC
Li Z., Hardij J., Bagchi D. P., Scheller E. L., MacDougald O. A. (2018). Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 110, 134–140. 10.1016/j.bone.2018.01.008 PubMed DOI PMC
Liao L., Yang X., Su X., Hu C., Zhu X., Yang N., et al. (2013). Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis. 4, e600. 10.1038/cddis.2013.130 PubMed DOI PMC
Liu L. F., Shen W. J., Ueno M., Patel S., Kraemer F. B. (2011). Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12, 212. 10.1186/1471-2164-12-212 PubMed DOI PMC
Liu Q., Jin L., Shen F. H., Balian G., Li X. J. (2013). Fullerol nanoparticles suppress inflammatory response and adipogenesis of vertebral bone marrow stromal cells--a potential novel treatment for intervertebral disc degeneration. Spine J. 13, 1571–1580. 10.1016/j.spinee.2013.04.004 PubMed DOI PMC
Liu Y., Shi C., He Z., Zhu F., Wang M., He R., et al. (2021). Inhibition of PI3K/AKT signaling via ROS regulation is involved in Rhein-induced apoptosis and enhancement of oxaliplatin sensitivity in pancreatic cancer cells. Int. J. Biol. Sci. 17, 589–602. 10.7150/ijbs.49514 PubMed DOI PMC
Lorenzo J. (2017). The many ways of osteoclast activation. J. Clin. Invest 127, 2530–2532. 10.1172/JCI94606 PubMed DOI PMC
Luo M. L., Jiao Y., Gong W. P., Li Y., Niu L. N., Tay F. R., et al. (2020). Macrophages enhance mesenchymal stem cell osteogenesis via down-regulation of reactive oxygen species. J. Dent. 94, 103297. 10.1016/j.jdent.2020.103297 PubMed DOI
Mahadev K., Wu X., Zilbering A., Zhu L., Lawrence J. T., Goldstein B. J. (2001). Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J. Biol. Chem. 276, 48662–48669. 10.1074/jbc.M105061200 PubMed DOI
Malorni W., Campesi I., Straface E., Vella S., Franconi F. (2007). Redox features of the cell: a gender perspective. Antioxid. Redox Signal 9, 1779–1801. 10.1089/ars.2007.1596 PubMed DOI
Martyn K. D., Frederick L. M., von Loehneysen K., Dinauer M. C., Knaus U. G. (2006). Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18, 69–82. 10.1016/j.cellsig.2005.03.023 PubMed DOI
Miggitsch C., Meryk A., Naismith E., Pangrazzi L., Ejaz A., Jenewein B., et al. (2019). Human bone marrow adipocytes display distinct immune regulatory properties. EBioMedicine 46, 387–398. 10.1016/j.ebiom.2019.07.023 PubMed DOI PMC
Pang W. W., Price E. A., Sahoo D., Beerman I., Maloney W. J., Rossi D. J., et al. (2011). Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. U. S. A. 108, 20012–20017. 10.1073/pnas.1116110108 PubMed DOI PMC
Peci F., Dekker L., Pagliaro A., van Boxtel R., Nierkens S., Belderbos M. (2022). The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transpl. 57, 1357–1364. 10.1038/s41409-022-01728-0 PubMed DOI PMC
Pham T. T., Ivaska K. K., Hannukainen J. C., Virtanen K. A., Lidell M. E., Enerback S., et al. (2020). Human bone marrow adipose tissue is a metabolically active and insulin-sensitive distinct fat depot. J. Clin. Endocrinol. Metab. 105, 2300–2310. 10.1210/clinem/dgaa216 PubMed DOI PMC
Rahman M. M., El Jamali A., Halade G. V., Ouhtit A., Abou-Saleh H., Pintus G. (2018). Nox2 activity is required in obesity-mediated alteration of bone remodeling. Oxid. Med. Cell Longev. 2018, 6054361. 10.1155/2018/6054361 PubMed DOI PMC
Rharass T., Lucas S. (2019). High glucose level impairs human mature bone marrow adipocyte function through increased ROS production. Front. Endocrinol. (Lausanne) 10, 607. 10.3389/fendo.2019.00607 PubMed DOI PMC
Rhee S. G., Bae Y. S., Lee S. R., Kwon J. (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE 2000, pe1. 10.1126/stke.2000.53.pe1 PubMed DOI
Richard A. J., White U., Elks C. M., Stephens J. M. (2000). Adipose tissue: physiology to metabolic dysfunction. Editors Feingold K. R., Anawalt B., Blackman M. R., Boyce A., Chrousos G., Corpas E., et al. (South Dartmouth (MA): Endotext; ).
Rossi L., Challen G. A., Sirin O., Lin K. K., Goodell M. A. (2011). Hematopoietic stem cell characterization and isolation. Methods Mol. Biol. 750, 47–59. 10.1007/978-1-61779-145-1_3 PubMed DOI PMC
Schroder K. (2019). NADPH oxidases in bone homeostasis and osteoporosis. Free Radic. Biol. Med. 132, 67–72. 10.1016/j.freeradbiomed.2018.08.036 PubMed DOI
Schroder K., Wandzioch K., Helmcke I., Brandes R. P. (2009). Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler. Thromb. Vasc. Biol. 29, 239–245. 10.1161/ATVBAHA.108.174219 PubMed DOI
Shafat M. S., Oellerich T., Mohr S., Robinson S. D., Edwards D. R., Marlein C. R., et al. (2017). Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129, 1320–1332. 10.1182/blood-2016-08-734798 PubMed DOI
Shanmugasundaram K., Nayak B. K., Friedrichs W. E., Kaushik D., Rodriguez R., Block K. (2017). NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat. Commun. 8, 997. 10.1038/s41467-017-01106-1 PubMed DOI PMC
Shen W., Velasquez G., Chen J., Jin Y., Heymsfield S. B., Gallagher D., et al. (2014). Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults. J. Clin. Densitom. 17, 163–169. 10.1016/j.jocd.2013.02.009 PubMed DOI PMC
Sies H. (2020). Oxidative stress: concept and some practical aspects. Antioxidants (Basel) 9, 852. 10.3390/antiox9090852 PubMed DOI PMC
Specht K. S., Kant S., Addington A. K., McMillan R. P., Hulver M. W., Learnard H., et al. (2021). Nox4 mediates skeletal muscle metabolic responses to exercise. Mol. Metab. 45, 101160. 10.1016/j.molmet.2020.101160 PubMed DOI PMC
Staehlke S., Haack F., Waldner A. C., Koczan D., Moerke C., Mueller P., et al. (2020). ROS dependent wnt/β-catenin pathway and its regulation on defined micro-pillars-A combined in vitro and in silico study. Cells 9, 1784. 10.3390/cells9081784 PubMed DOI PMC
Stockman R., Greig E. D. W. (1898). The action of arsenic on the bone-marrow and blood. J. Physiol. 23 (1898), 376–382. 10.1113/jphysiol.1898.sp000734 PubMed DOI PMC
Suchacki K. J., Cawthorn W. P. (2018). Molecular interaction of bone marrow adipose tissue with energy metabolism. Curr. Mol. Biol. Rep. 4, 41–49. 10.1007/s40610-018-0096-8 PubMed DOI PMC
Suchacki K. J., Tavares A. A. S., Mattiucci D., Scheller E. L., Papanastasiou G., Gray C., et al. (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat. Commun. 11, 3097. 10.1038/s41467-020-16878-2 PubMed DOI PMC
Sui B., Hu C., Liao L., Chen Y., Zhang X., Fu X., et al. (2016). Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci. Rep. 6, 30186. 10.1038/srep30186 PubMed DOI PMC
Sun J., Chen W., Li S., Yang S., Zhang Y., Hu X., et al. (2021). Nox4 promotes RANKL-induced autophagy and osteoclastogenesis via activating ROS/PERK/eIF-2α/ATF4 pathway. Front. Pharmacol. 12, 751845. 10.3389/fphar.2021.751845 PubMed DOI PMC
Tabe Y., Yamamoto S., Saitoh K., Sekihara K., Monma N., Ikeo K., et al. (2017). Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res. 77, 1453–1464. 10.1158/0008-5472.can-16-1645 PubMed DOI PMC
Takac I., Schroder K., Zhang L., Lardy B., Anilkumar N., Lambeth J. D., et al. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304–13313. 10.1074/jbc.M110.192138 PubMed DOI PMC
Tencerova M., Ferencakova M., Kassem M. (2021). Bone marrow adipose tissue: role in bone remodeling and energy metabolism. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101545. 10.1016/j.beem.2021.101545 PubMed DOI
Tencerova M., Figeac F., Ditzel N., Taipaleenmaki H., Nielsen T. K., Kassem M. (2018). High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J. Bone Min. Res. 33, 1154–1165. 10.1002/jbmr.3408 PubMed DOI
Tencerova M., Frost M., Figeac F., Nielsen T. K., Ali D., Lauterlein J. L., et al. (2019a). Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep. 27, 2050–2062 e6. 10.1016/j.celrep.2019.04.066 PubMed DOI
Tencerova M., Kassem M. (2016). The bone marrow-derived stromal cells: commitment and regulation of adipogenesis. Front. Endocrinol. (Lausanne) 7, 127. 10.3389/fendo.2016.00127 PubMed DOI PMC
Tencerova M., Rendina-Ruedy E., Neess D., Faergeman N., Figeac F., Ali D., et al. (2019b). Metabolic programming determines the lineage-differentiation fate of murine bone marrow stromal progenitor cells. Bone Res. 7, 35. 10.1038/s41413-019-0076-5 PubMed DOI PMC
van Dalen S. C. M., Kruisbergen N. N. L., Walgreen B., Helsen M. M. A., Sloetjes A. W., Cremers N. A. J., et al. (2018). The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis. Osteoarthr. Cartil. 26, 1722–1732. 10.1016/j.joca.2018.08.014 PubMed DOI
Vieceli Dalla Sega F., Prata C., Zambonin L., Angeloni C., Rizzo B., Hrelia S., et al. (2017). Intracellular cysteine oxidation is modulated by aquaporin-8-mediated hydrogen peroxide channeling in leukaemia cells. Biofactors 43, 232–242. 10.1002/biof.1340 PubMed DOI
Wang N., Wang L., Yang J., Wang Z., Cheng L. (2021). Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother. Res. 35, 2639–2650. 10.1002/ptr.7010 PubMed DOI
Wang Y., Liu L., Pazhanisamy S. K., Li H., Meng A., Zhou D. (2010). Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med. 48, 348–356. 10.1016/j.freeradbiomed.2009.11.005 PubMed DOI PMC
Wang Y., Zou X., Guo Y., Wang L., Liu Y., Zeng Q., et al. (2015). Mechanical strain affects some microrna profiles in pre-oeteoblasts. Cell Mol. Biol. Lett. 20, 586–596. 10.1515/cmble-2015-0034 PubMed DOI
Wauquier F., Leotoing L., Coxam V., Guicheux J., Wittrant Y. (2009). Oxidative stress in bone remodelling and disease. Trends Mol. Med. 15, 468–477. 10.1016/j.molmed.2009.08.004 PubMed DOI
Woods G. N., Ewing S. K., Schafer A. L., Gudnason V., Sigurdsson S., Lang T., et al. (2022). Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults. J. Bone Min. Res. 37, 700–710. 10.1002/jbmr.4504 PubMed DOI PMC
Wu Z., Hou Q., Chen T., Jiang X., Wang L., Xu J., et al. (2022). ROS-reactive PMS/PC drug delivery system improves new bone formation under diabetic conditions by promoting angiogenesis-osteogenesis coupling via down-regulating NOX2-ROS signalling axis. Biomaterials 291, 121900. 10.1016/j.biomaterials.2022.121900 PubMed DOI
Yan W., Diao S., Fan Z. (2021). The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem Cell Res. Ther. 12, 140. 10.1186/s13287-021-02194-z PubMed DOI PMC
Yang S., Zhang Y., Ries W., Key L. (2004). Expression of Nox4 in osteoclasts. J. Cell Biochem. 92, 238–248. 10.1002/jcb.20048 PubMed DOI
Yeung D. K., Griffith J. F., Antonio G. E., Lee F. K., Woo J., Leung P. C. (2005). Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J. Magn. Reson Imaging 22, 279–285. 10.1002/jmri.20367 PubMed DOI