When Shannon and Khinchin meet Shore and Johnson: Equivalence of information theory and statistical inference axiomatics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
I 3073
Austrian Science Fund FWF - Austria
- Publikační typ
- časopisecké články MeSH
We propose a unified framework for both Shannon-Khinchin and Shore-Johnson axiomatic systems. We do it by rephrasing Shannon-Khinchine axioms in terms of generalized arithmetics of Kolmogorov and Nagumo. We prove that the two axiomatic schemes yield identical classes of entropic functionals-the Uffink class of entropies. This allows to re-establish the entropic parallelism between information theory and statistical inference that has seemed to be "broken" by the use of non-Shannonian entropies.
Citace poskytuje Crossref.org
Causal Inference in Time Series in Terms of Rényi Transfer Entropy
Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle