From Rényi Entropy Power to Information Scan of Quantum States
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-16066S
Grantová Agentura České Republiky
PubMed
33809011
PubMed Central
PMC8001603
DOI
10.3390/e23030334
PII: e23030334
Knihovny.cz E-resources
- Keywords
- Rényi entropy, Tsallis entropy, entropic uncertainty relations, quantum metrology,
- Publication type
- Journal Article MeSH
In this paper, we generalize the notion of Shannon's entropy power to the Rényi-entropy setting. With this, we propose generalizations of the de Bruijn identity, isoperimetric inequality, or Stam inequality. This framework not only allows for finding new estimation inequalities, but it also provides a convenient technical framework for the derivation of a one-parameter family of Rényi-entropy-power-based quantum-mechanical uncertainty relations. To illustrate the usefulness of the Rényi entropy power obtained, we show how the information probability distribution associated with a quantum state can be reconstructed in a process that is akin to quantum-state tomography. We illustrate the inner workings of this with the so-called "cat states", which are of fundamental interest and practical use in schemes such as quantum metrology. Salient issues, including the extension of the notion of entropy power to Tsallis entropy and ensuing implications in estimation theory, are also briefly discussed.
Department of Physics and Astronomy University of Sussex Brighton BN1 9QH UK
FNSPE Czech Technical University Prague Břehová 7 115 19 Praha 1 Czech Republic
See more in PubMed
Bennaim A. Information, Entropy, Life in addition, the Universe: What We Know Amnd What We Do Not Know. World Scientific; Singapore: 2015.
Jaynes E.T. Papers on Probability and Statistics and Statistical Physics. D. Reidel Publishing Company; Boston, MA, USA: 1983.
Millar R.B. Maximum Likelihood Estimation and Infrence. John Wiley and Soms Ltd.; Chichester, UK: 2011.
Leff H.S., Rex A.F., editors. Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Institute of Physics; London, UK: 2002.
Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423; 623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Shannon C.E., Weaver W. The Mathematical Theory of Communication. University of Illinois Press; New York, NY, USA: 1949.
Feinstein A. Foundations of Information Theory. McGraw Hill; New York, NY, USA: 1958.
Campbell L.L. A Coding Theorem and Rényi’s Entropy. Inf. Control. 1965;8:423–429. doi: 10.1016/S0019-9958(65)90332-3. DOI
Bercher J.-F. Source Coding Escort Distributions Rényi Entropy Bounds. Phys. Lett. A. 2009;373:3235–3238. doi: 10.1016/j.physleta.2009.07.015. DOI
Thurner S., Hanel R., Klimek P. Introduction to the Theory of Complex Systems. Oxford University Press; Oxford, UK: 2018.
Tsallis C. Introduction to Nonextensive Statistical Mechanics. Springer; New York, NY, USA: 2009. Approaching a Complex World.
Bialynicki-Birula I. Rényi Entropy and the Uncertainty Relations. AIP Conf. Proc. 2007;889:52–61.
Jizba P., Ma Y., Hayes A., Dunningham J.A. One-parameter class of uncertainty relations based on entropy power. Phys. Rev. E. 2016;93:060104-1(R)–060104-5(R). doi: 10.1103/PhysRevE.93.060104. PubMed DOI
Maassen H., Uffink J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988;60:1103–1106. doi: 10.1103/PhysRevLett.60.1103. PubMed DOI
Bialynicki-Birula I., Mycielski J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975;44:129–132. doi: 10.1007/BF01608825. DOI
Dang P., Deng G.-T., Qian T. A sharper uncertainty principle. J. Funct. Anal. 2013;265:2239–2266. doi: 10.1016/j.jfa.2013.07.023. DOI
Ozawa T., Yuasa K. Uncertainty relations in the framework of equalities. J. Math. Anal. Appl. 2017;445:998–1012. doi: 10.1016/j.jmaa.2016.08.023. DOI
Zeng B., Chen X., Zhou D.-L., Wen X.-G. Quantum Information MeetsQuantum Matter: From Quantum Entanglement to Topological Phase in Many-Body Systems. Springer; New York, NY, USA: 2018.
Melcher B., Gulyak B., Wiersig J. Information-theoretical approach to the many-particle hierarchy problem. Phys. Rev. A. 2019;100:013854-1–013854-5. doi: 10.1103/PhysRevA.100.013854. DOI
Ryu S., Takayanagi T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 2006;96:181602-1–181602-4. doi: 10.1103/PhysRevLett.96.181602. PubMed DOI
Eisert J., Cramer M., Plenio M.B. Area laws for the entanglement entropy—A review. Rev. Mod. Phys. 2010;82:277–306. doi: 10.1103/RevModPhys.82.277. DOI
Pikovski I., Vanner M.R., Aspelmeyer M., Kim M.S., Brukner Č. Probing Planck-Scale physics Quantum Optics. Nat. Phys. 2012;8:393–397. doi: 10.1038/nphys2262. DOI
Marin F., Marino F., Bonaldi M., Cerdonio M., Conti L., Falferi P., Mezzena R., Ortolan A., Prodi G.A., Taffarello L., et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nat. Phys. 2013;9:71–73.
An S., Zhang J.-N., Um M., Lv D., Lu Y., Zhang J., Yin Z.-Q., Quan H.T., Kim K. Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys. 2014;11:193–199. doi: 10.1038/nphys3197. DOI
Campisi M., Hänggi P., Talkner P. Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 2011;83:771–791. doi: 10.1103/RevModPhys.83.771. DOI
Erhart J., Sponar S., Sulyok G., Badurek G., Ozawa M., Hasegawa Y. Experimental demonstration of a universally valid error—Disturbance uncertainty relation in spin measurements. Nat. Phys. 2012;8:185–189. doi: 10.1038/nphys2194. DOI
Sulyok G., Sponar S., Erhart J., Badurek G., Ozawa M., Hasegawa Y. Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements. Phys. Rev. A. 2013;88:022110-1–022110-15. doi: 10.1103/PhysRevA.88.022110. DOI
Baek S.Y., Kaneda F., Ozawa M., Edamatsu K. Experimental violation and reformulation of the Heisenberg’s error-disturbance uncertainty relation. Sci. Rep. 2013;3:2221-1–2221-5. doi: 10.1038/srep02221. PubMed DOI PMC
Dressel J., Nori F. Certainty in Heisenberg’s uncertainty principle: Revisiting definitions for estimation errors and disturbance. Phys. Rev. A. 2014;89:022106-1–022106-14. doi: 10.1103/PhysRevA.89.022106. DOI
Busch P., Lahti P., Werner R.F. Proof of Heisenberg’s Error-Disturbance Relation. Phys. Rev. Lett. 2013;111:160405-1–160405-5. doi: 10.1103/PhysRevLett.111.160405. PubMed DOI
Jizba P., Arimitsu T. The world according to Rényi: Thermodynamics of multifractal systems. Ann. Phys. 2004;312:17–59. doi: 10.1016/j.aop.2004.01.002. DOI
Liu R., Liu T., Poor H.V., Shamai S. A Vector Generalization of Costa’s Entropy-Power Inequality with Applications. IEEE Trans. Inf. Theory. 2010;56:1865–1879.
Costa M.H.M. On the Gaussian interference channel. IEEE Trans. Inf. Theory. 1985;31:607–615. doi: 10.1109/TIT.1985.1057085. DOI
Polyanskiy Y., Wu Y. Wasserstein continuity of entropy and outer bounds for interference channels. arXiv. 2015 doi: 10.1109/TIT.2016.2562630.1504.04419 DOI
Bagherikaram G., Motahari A.S., Khandani A.K. The Secrecy Capacity Region of the Gaussian MIMO Broadcast Channel. IEEE Trans. Inf. Theory. 2013;59:2673–2682. doi: 10.1109/TIT.2012.2236972. DOI
De Palma G., Mari A., Lloyd S., Giovannetti V. Multimode quantum entropy power inequality. Phys. Rev. A. 2015;91:032320-1–032320-6. doi: 10.1103/PhysRevA.91.032320. DOI
Costa M.H. A new entropy power inequality. IEEE Trans. Inf. Theory. 1985;31:751–760. doi: 10.1109/TIT.1985.1057105. DOI
Frieden B.R. Science from Fisher Information: A Unification. Cambridge University Press; Cambridge, UK: 2004.
Courtade T.A. Strengthening the Entropy Power Inequality. arXiv. 20161602.03033
Barron A.R. Entropy and the Central Limit Theorem. Ann. Probab. 1986;14:336–342. doi: 10.1214/aop/1176992632. DOI
Pardo L. New Developments in Statistical Information Theory Based on Entropy and Divergence Measures. Entropy. 2019;21:391. doi: 10.3390/e21040391. PubMed DOI PMC
Biró T., Barnaföldi G., Ván P. New entropy formula with fluctuating reservoir. Physics A. 2015;417:215–220. doi: 10.1016/j.physa.2014.07.086. DOI
Bíró G., Barnaföldi G.G., Biró T.S., Ürmössy K., Takács Á. Systematic Analysis of the Non-Extensive Statistical Approach in High Energy Particle Collisions—Experiment vs. Theory. Entropy. 2017;19:88. doi: 10.3390/e19030088. DOI
Hanel R., Thurner S. When do generalized entropies apply? How phase space volume determines entropy. Europhys. Lett. 2011;96:50003-1–50003-6. doi: 10.1209/0295-5075/96/50003. DOI
Hanel R., Thurner S., Gell-Mann M. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems. Proc. Natl. Acad. Sci. USA. 2014;111:6905–6910. doi: 10.1073/pnas.1406071111. PubMed DOI PMC
Burg J.P. The Relationship Between Maximum Entropy Spectra In addition, Maximum Likelihood Spectra. Geophysics. 1972;37:375–376. doi: 10.1190/1.1440265. DOI
Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988;52:479–487. doi: 10.1007/BF01016429. DOI
Havrda J., Charvát F. Quantification Method of Classification Processes: Concept of Structural α-Entropy. Kybernetika. 1967;3:30–35.
Frank T., Daffertshofer A. Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal. Physics A. 2000;285:351–366. doi: 10.1016/S0378-4371(00)00178-3. DOI
Sharma B.D., Mitter J., Mohan M. On measures of “useful” information. Inf. Control. 1978;39:323–336. doi: 10.1016/S0019-9958(78)90671-X. DOI
Jizba P., Korbel J. On q-non-extensive statistics with non-Tsallisian entropy. Physics A. 2016;444:808–827. doi: 10.1016/j.physa.2015.10.084. DOI
Jizba P., Arimitsu T. Generalized statistics: Yet another generalization. Physics A. 2004;340:110–116. doi: 10.1016/j.physa.2004.03.085. DOI
Vos G. Generalized additivity in unitary conformal field theories. Nucl. Phys. B. 2015;899:91–111. doi: 10.1016/j.nuclphysb.2015.07.013. DOI
Uffink J. Can the maximum entropy principle be explained as a consistency requirement? Stud. Hist. Phil. Mod. Phys. 1995;26:223–261. doi: 10.1016/1355-2198(95)00015-1. DOI
Jizba P., Korbel J. Maximum Entropy Principle in Statistical Inference: Case for Non-Shannonian Entropies. Phys. Rev. Lett. 2019;122:120601-1–120601-6. doi: 10.1103/PhysRevLett.122.120601. PubMed DOI
Jizba P., Arimitsu T. Observability of Rényi’s entropy. Phys. Rev. E. 2004;69:026128-1–026128-12. doi: 10.1103/PhysRevE.69.026128. PubMed DOI
Elben A., Vermersch B., Dalmonte M., Cirac J.I., Zoller P. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models. Phys. Rev. Lett. 2018;120:050406-1–050406-6. doi: 10.1103/PhysRevLett.120.050406. PubMed DOI
Bacco D., Canale M., Laurenti N., Vallone G., Villoresi P. Experimental quantum key distribution with finite-key security analysis for noisy channels. Nat. Commun. 2013;4:2363-1–2363-8. doi: 10.1038/ncomms3363. PubMed DOI
Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M. On quantum Renyi entropies: A new generalization and some properties. J. Math. Phys. 2013;54:122203-1–122203-20. doi: 10.1063/1.4838856. DOI
Coles P.J., Colbeck R., Yu L., Zwolak M. Uncertainty Relations from Simple Entropic Properties. Phys. Rev. Lett. 2012;108:210405-1–210405-5. doi: 10.1103/PhysRevLett.108.210405. PubMed DOI
Minter F., Kuś M., Buchleitner A. Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions. Phys. Rev. Lett. 2004;92:167902-1–167902-4. PubMed
Vidal G., Tarrach R. Robustness of entanglement. Phys. Rev. A. 1999;59:141–155. doi: 10.1103/PhysRevA.59.141. DOI
Bengtsson I., Życzkowski K. Geometry of Quantum States. An Introduction to Quantum Entanglement. Cambridge University Press; Cambridge, UK: 2006.
Jizba P., Dunningham J.A., Joo J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015;355:87–114. doi: 10.1016/j.aop.2015.01.031. DOI
Toranzo I.V., Zozor S., Brossier J.-M. Generalization of the de Bruijn Identity to General ϕ-Entropies and ϕ-Fisher Informations. IEEE Trans. Inf. Theory. 2018;64:6743–6758. doi: 10.1109/TIT.2017.2771209. DOI
Rioul O. Information Theoretic Proofs of Entropy Power Inequalities. IEEE Trans. Inf. Theory. 2011;57:33–55. doi: 10.1109/TIT.2010.2090193. DOI
Dembo A., Cover T.M. Information Theoretic Inequalitis. IEEE Trans. Inf. Theory. 1991;37:1501–1517. doi: 10.1109/18.104312. DOI
Lutwak E., Lv S., Yang D., Zhang G. Extensions of Fisher Information and Stam’s Inequality. IEEE Trans. Inf. Theory. 2012;58:1319–1327. doi: 10.1109/TIT.2011.2177563. DOI
Widder D.V. The Laplace Transform. Princeton University Press; Princeton, NJ, USA: 1946.
Knott P.A., Proctor T.J., Hayes A.J., Ralph J.F., Kok P., Dunningham J.A. Local versus Global Strategies in Multi-parameter Estimation. Phys. Rev. A. 2016;94:062312-1–062312-7. doi: 10.1103/PhysRevA.94.062312. DOI
Beck C., Schlögl F. Thermodynamics of Chaotic Systems. Cambridge University Press; Cambridge, UK: 1993.
Gardner R.J. The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 2002;39:355–405. doi: 10.1090/S0273-0979-02-00941-2. DOI
Cover T.M., Thomas J.A. Elements of Information Theory. Wiley-Interscience; Hoboken, NJ, USA: 2006.
Einstein A. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys. 1910;33:1275–1298. doi: 10.1002/andp.19103381612. DOI
De Palma G. The entropy power inequality with quantum conditioning. J. Phys. A Math. Theor. 2019;52:08LT03-1–08LT03-12. doi: 10.1088/1751-8121/aafff4. DOI
Ram E., Sason I. On Rényi Entropy Power Inequalities. IEEE Trans. Inf. Theory. 2016;62:6800–6815. doi: 10.1109/TIT.2016.2616135. DOI
Stam A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control. 1959;2:101–112. doi: 10.1016/S0019-9958(59)90348-1. DOI
Rényi A. Probability Theory. Volume 2 Akadémia Kiado; Budapest, Hungary: 1976. Selected Papers of Alfred Rényi.
Cramér H. Mathematical Methods of Statistics. Princeton University Press; Princeton, NJ, USA: 1946.
Wilk G., Włodarczyk Z. Uncertainty relations in terms of the Tsallis entropy. Phys. Rev. A. 2009;79:062108-1–062108-6. doi: 10.1103/PhysRevA.79.062108. DOI
Schrödinger E. About Heisenberg Uncertainty Relation. Sitzungsber. Preuss. Akad. Wiss. 1930;24:296–303.
Robertson H.P. The Uncertainty Principle. Phys. Rev. 1929;34:163–164. doi: 10.1103/PhysRev.34.163. DOI
Hirschman I.I., Jr. A Note on Entropy. Am. J. Math. 1957;79:152–156. doi: 10.2307/2372390. DOI
D’Ariano M.G., De Laurentis M., Paris M.G.A., Porzio A., Solimeno S. Quantum tomography as a tool for the characterization of optical devices. J. Opt. B. 2002;4:127–132. doi: 10.1088/1464-4266/4/3/366. DOI
Lvovsky A.I., Raymer M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009;81:299–332. doi: 10.1103/RevModPhys.81.299. DOI
Gross D., Liu Y.-K., Flammia S.T., Becker S., Eisert J. Quantum State Tomography via Compressed Sensing. Phys. Rev. Lett. 2010;105:150401-1–150401-4. doi: 10.1103/PhysRevLett.105.150401. PubMed DOI
Beckner W. Inequalities in Fourier Analysis. Ann. Math. 1975;102:159–182. doi: 10.2307/1970980. PubMed DOI PMC
Babenko K.I. An inequality in the theory of Fourier integrals. Am. Math. Soc. Transl. 1962;44:115–128.
Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach; New York, NY, USA: 1993.
Reed M., Simon B. Methods of Modern Mathematical Physics. Volume XI Academic Press; New York, NY, USA: 1975.
Wallace D.L. Asymptotic Approximations to Distributions. Ann. Math. Stat. 1958;29:635–654. doi: 10.1214/aoms/1177706528. DOI
Zolotarev V.M. Mellin—Stieltjes Transforms in Probability Theory. Theory Probab. Appl. 1957;2:444–469. doi: 10.1137/1102031. DOI
Tagliani A. Inverse two-sided Laplace transform for probability density functions. J. Comp. Appl. Math. 1998;90:157–170. doi: 10.1016/S0377-0427(98)00013-2. DOI
Lukacs E. Characteristic Functions. Charles Griffin; London, UK: 1970.
Pal N., Jin C., Lim W.K. Handbook of Exponential and Related Distributions for Engineers and Scientists. Taylor & Francis Group; New York, NY, USA: 2005.
Kira M., Koch S.W., Smith R.P., Hunter A.E., Cundiff S.T. Quantum spectroscopy with Schrödinger-cat states. Nat. Phys. 2011;7:799–804.
Knott P.A., Cooling J.P., Hayes A., Proctor T.J., Dunningham J.A. Practical quantum metrology with large precision gains in the low-photon-number regime. Phys. Rev. A. 2016;93:033859-1–033859-7. doi: 10.1103/PhysRevA.93.033859. DOI
Wei L. On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State. Entropy. 2019;21:539. doi: 10.3390/e21050539. PubMed DOI PMC
Marcinkiewicz J. On a Property of the Gauss law. Math. Z. 1939;44:612–618. doi: 10.1007/BF01210677. DOI
The Statistical Foundations of Entropy