• This record comes from PubMed

From Rényi Entropy Power to Information Scan of Quantum States

. 2021 Mar 12 ; 23 (3) : . [epub] 20210312

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-16066S Grantová Agentura České Republiky

In this paper, we generalize the notion of Shannon's entropy power to the Rényi-entropy setting. With this, we propose generalizations of the de Bruijn identity, isoperimetric inequality, or Stam inequality. This framework not only allows for finding new estimation inequalities, but it also provides a convenient technical framework for the derivation of a one-parameter family of Rényi-entropy-power-based quantum-mechanical uncertainty relations. To illustrate the usefulness of the Rényi entropy power obtained, we show how the information probability distribution associated with a quantum state can be reconstructed in a process that is akin to quantum-state tomography. We illustrate the inner workings of this with the so-called "cat states", which are of fundamental interest and practical use in schemes such as quantum metrology. Salient issues, including the extension of the notion of entropy power to Tsallis entropy and ensuing implications in estimation theory, are also briefly discussed.

See more in PubMed

Bennaim A. Information, Entropy, Life in addition, the Universe: What We Know Amnd What We Do Not Know. World Scientific; Singapore: 2015.

Jaynes E.T. Papers on Probability and Statistics and Statistical Physics. D. Reidel Publishing Company; Boston, MA, USA: 1983.

Millar R.B. Maximum Likelihood Estimation and Infrence. John Wiley and Soms Ltd.; Chichester, UK: 2011.

Leff H.S., Rex A.F., editors. Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Institute of Physics; London, UK: 2002.

Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423; 623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI

Shannon C.E., Weaver W. The Mathematical Theory of Communication. University of Illinois Press; New York, NY, USA: 1949.

Feinstein A. Foundations of Information Theory. McGraw Hill; New York, NY, USA: 1958.

Campbell L.L. A Coding Theorem and Rényi’s Entropy. Inf. Control. 1965;8:423–429. doi: 10.1016/S0019-9958(65)90332-3. DOI

Bercher J.-F. Source Coding Escort Distributions Rényi Entropy Bounds. Phys. Lett. A. 2009;373:3235–3238. doi: 10.1016/j.physleta.2009.07.015. DOI

Thurner S., Hanel R., Klimek P. Introduction to the Theory of Complex Systems. Oxford University Press; Oxford, UK: 2018.

Tsallis C. Introduction to Nonextensive Statistical Mechanics. Springer; New York, NY, USA: 2009. Approaching a Complex World.

Bialynicki-Birula I. Rényi Entropy and the Uncertainty Relations. AIP Conf. Proc. 2007;889:52–61.

Jizba P., Ma Y., Hayes A., Dunningham J.A. One-parameter class of uncertainty relations based on entropy power. Phys. Rev. E. 2016;93:060104-1(R)–060104-5(R). doi: 10.1103/PhysRevE.93.060104. PubMed DOI

Maassen H., Uffink J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988;60:1103–1106. doi: 10.1103/PhysRevLett.60.1103. PubMed DOI

Bialynicki-Birula I., Mycielski J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975;44:129–132. doi: 10.1007/BF01608825. DOI

Dang P., Deng G.-T., Qian T. A sharper uncertainty principle. J. Funct. Anal. 2013;265:2239–2266. doi: 10.1016/j.jfa.2013.07.023. DOI

Ozawa T., Yuasa K. Uncertainty relations in the framework of equalities. J. Math. Anal. Appl. 2017;445:998–1012. doi: 10.1016/j.jmaa.2016.08.023. DOI

Zeng B., Chen X., Zhou D.-L., Wen X.-G. Quantum Information MeetsQuantum Matter: From Quantum Entanglement to Topological Phase in Many-Body Systems. Springer; New York, NY, USA: 2018.

Melcher B., Gulyak B., Wiersig J. Information-theoretical approach to the many-particle hierarchy problem. Phys. Rev. A. 2019;100:013854-1–013854-5. doi: 10.1103/PhysRevA.100.013854. DOI

Ryu S., Takayanagi T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 2006;96:181602-1–181602-4. doi: 10.1103/PhysRevLett.96.181602. PubMed DOI

Eisert J., Cramer M., Plenio M.B. Area laws for the entanglement entropy—A review. Rev. Mod. Phys. 2010;82:277–306. doi: 10.1103/RevModPhys.82.277. DOI

Pikovski I., Vanner M.R., Aspelmeyer M., Kim M.S., Brukner Č. Probing Planck-Scale physics Quantum Optics. Nat. Phys. 2012;8:393–397. doi: 10.1038/nphys2262. DOI

Marin F., Marino F., Bonaldi M., Cerdonio M., Conti L., Falferi P., Mezzena R., Ortolan A., Prodi G.A., Taffarello L., et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nat. Phys. 2013;9:71–73.

An S., Zhang J.-N., Um M., Lv D., Lu Y., Zhang J., Yin Z.-Q., Quan H.T., Kim K. Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys. 2014;11:193–199. doi: 10.1038/nphys3197. DOI

Campisi M., Hänggi P., Talkner P. Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 2011;83:771–791. doi: 10.1103/RevModPhys.83.771. DOI

Erhart J., Sponar S., Sulyok G., Badurek G., Ozawa M., Hasegawa Y. Experimental demonstration of a universally valid error—Disturbance uncertainty relation in spin measurements. Nat. Phys. 2012;8:185–189. doi: 10.1038/nphys2194. DOI

Sulyok G., Sponar S., Erhart J., Badurek G., Ozawa M., Hasegawa Y. Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements. Phys. Rev. A. 2013;88:022110-1–022110-15. doi: 10.1103/PhysRevA.88.022110. DOI

Baek S.Y., Kaneda F., Ozawa M., Edamatsu K. Experimental violation and reformulation of the Heisenberg’s error-disturbance uncertainty relation. Sci. Rep. 2013;3:2221-1–2221-5. doi: 10.1038/srep02221. PubMed DOI PMC

Dressel J., Nori F. Certainty in Heisenberg’s uncertainty principle: Revisiting definitions for estimation errors and disturbance. Phys. Rev. A. 2014;89:022106-1–022106-14. doi: 10.1103/PhysRevA.89.022106. DOI

Busch P., Lahti P., Werner R.F. Proof of Heisenberg’s Error-Disturbance Relation. Phys. Rev. Lett. 2013;111:160405-1–160405-5. doi: 10.1103/PhysRevLett.111.160405. PubMed DOI

Jizba P., Arimitsu T. The world according to Rényi: Thermodynamics of multifractal systems. Ann. Phys. 2004;312:17–59. doi: 10.1016/j.aop.2004.01.002. DOI

Liu R., Liu T., Poor H.V., Shamai S. A Vector Generalization of Costa’s Entropy-Power Inequality with Applications. IEEE Trans. Inf. Theory. 2010;56:1865–1879.

Costa M.H.M. On the Gaussian interference channel. IEEE Trans. Inf. Theory. 1985;31:607–615. doi: 10.1109/TIT.1985.1057085. DOI

Polyanskiy Y., Wu Y. Wasserstein continuity of entropy and outer bounds for interference channels. arXiv. 2015 doi: 10.1109/TIT.2016.2562630.1504.04419 DOI

Bagherikaram G., Motahari A.S., Khandani A.K. The Secrecy Capacity Region of the Gaussian MIMO Broadcast Channel. IEEE Trans. Inf. Theory. 2013;59:2673–2682. doi: 10.1109/TIT.2012.2236972. DOI

De Palma G., Mari A., Lloyd S., Giovannetti V. Multimode quantum entropy power inequality. Phys. Rev. A. 2015;91:032320-1–032320-6. doi: 10.1103/PhysRevA.91.032320. DOI

Costa M.H. A new entropy power inequality. IEEE Trans. Inf. Theory. 1985;31:751–760. doi: 10.1109/TIT.1985.1057105. DOI

Frieden B.R. Science from Fisher Information: A Unification. Cambridge University Press; Cambridge, UK: 2004.

Courtade T.A. Strengthening the Entropy Power Inequality. arXiv. 20161602.03033

Barron A.R. Entropy and the Central Limit Theorem. Ann. Probab. 1986;14:336–342. doi: 10.1214/aop/1176992632. DOI

Pardo L. New Developments in Statistical Information Theory Based on Entropy and Divergence Measures. Entropy. 2019;21:391. doi: 10.3390/e21040391. PubMed DOI PMC

Biró T., Barnaföldi G., Ván P. New entropy formula with fluctuating reservoir. Physics A. 2015;417:215–220. doi: 10.1016/j.physa.2014.07.086. DOI

Bíró G., Barnaföldi G.G., Biró T.S., Ürmössy K., Takács Á. Systematic Analysis of the Non-Extensive Statistical Approach in High Energy Particle Collisions—Experiment vs. Theory. Entropy. 2017;19:88. doi: 10.3390/e19030088. DOI

Hanel R., Thurner S. When do generalized entropies apply? How phase space volume determines entropy. Europhys. Lett. 2011;96:50003-1–50003-6. doi: 10.1209/0295-5075/96/50003. DOI

Hanel R., Thurner S., Gell-Mann M. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems. Proc. Natl. Acad. Sci. USA. 2014;111:6905–6910. doi: 10.1073/pnas.1406071111. PubMed DOI PMC

Burg J.P. The Relationship Between Maximum Entropy Spectra In addition, Maximum Likelihood Spectra. Geophysics. 1972;37:375–376. doi: 10.1190/1.1440265. DOI

Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988;52:479–487. doi: 10.1007/BF01016429. DOI

Havrda J., Charvát F. Quantification Method of Classification Processes: Concept of Structural α-Entropy. Kybernetika. 1967;3:30–35.

Frank T., Daffertshofer A. Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal. Physics A. 2000;285:351–366. doi: 10.1016/S0378-4371(00)00178-3. DOI

Sharma B.D., Mitter J., Mohan M. On measures of “useful” information. Inf. Control. 1978;39:323–336. doi: 10.1016/S0019-9958(78)90671-X. DOI

Jizba P., Korbel J. On q-non-extensive statistics with non-Tsallisian entropy. Physics A. 2016;444:808–827. doi: 10.1016/j.physa.2015.10.084. DOI

Jizba P., Arimitsu T. Generalized statistics: Yet another generalization. Physics A. 2004;340:110–116. doi: 10.1016/j.physa.2004.03.085. DOI

Vos G. Generalized additivity in unitary conformal field theories. Nucl. Phys. B. 2015;899:91–111. doi: 10.1016/j.nuclphysb.2015.07.013. DOI

Uffink J. Can the maximum entropy principle be explained as a consistency requirement? Stud. Hist. Phil. Mod. Phys. 1995;26:223–261. doi: 10.1016/1355-2198(95)00015-1. DOI

Jizba P., Korbel J. Maximum Entropy Principle in Statistical Inference: Case for Non-Shannonian Entropies. Phys. Rev. Lett. 2019;122:120601-1–120601-6. doi: 10.1103/PhysRevLett.122.120601. PubMed DOI

Jizba P., Arimitsu T. Observability of Rényi’s entropy. Phys. Rev. E. 2004;69:026128-1–026128-12. doi: 10.1103/PhysRevE.69.026128. PubMed DOI

Elben A., Vermersch B., Dalmonte M., Cirac J.I., Zoller P. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models. Phys. Rev. Lett. 2018;120:050406-1–050406-6. doi: 10.1103/PhysRevLett.120.050406. PubMed DOI

Bacco D., Canale M., Laurenti N., Vallone G., Villoresi P. Experimental quantum key distribution with finite-key security analysis for noisy channels. Nat. Commun. 2013;4:2363-1–2363-8. doi: 10.1038/ncomms3363. PubMed DOI

Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M. On quantum Renyi entropies: A new generalization and some properties. J. Math. Phys. 2013;54:122203-1–122203-20. doi: 10.1063/1.4838856. DOI

Coles P.J., Colbeck R., Yu L., Zwolak M. Uncertainty Relations from Simple Entropic Properties. Phys. Rev. Lett. 2012;108:210405-1–210405-5. doi: 10.1103/PhysRevLett.108.210405. PubMed DOI

Minter F., Kuś M., Buchleitner A. Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions. Phys. Rev. Lett. 2004;92:167902-1–167902-4. PubMed

Vidal G., Tarrach R. Robustness of entanglement. Phys. Rev. A. 1999;59:141–155. doi: 10.1103/PhysRevA.59.141. DOI

Bengtsson I., Życzkowski K. Geometry of Quantum States. An Introduction to Quantum Entanglement. Cambridge University Press; Cambridge, UK: 2006.

Jizba P., Dunningham J.A., Joo J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015;355:87–114. doi: 10.1016/j.aop.2015.01.031. DOI

Toranzo I.V., Zozor S., Brossier J.-M. Generalization of the de Bruijn Identity to General ϕ-Entropies and ϕ-Fisher Informations. IEEE Trans. Inf. Theory. 2018;64:6743–6758. doi: 10.1109/TIT.2017.2771209. DOI

Rioul O. Information Theoretic Proofs of Entropy Power Inequalities. IEEE Trans. Inf. Theory. 2011;57:33–55. doi: 10.1109/TIT.2010.2090193. DOI

Dembo A., Cover T.M. Information Theoretic Inequalitis. IEEE Trans. Inf. Theory. 1991;37:1501–1517. doi: 10.1109/18.104312. DOI

Lutwak E., Lv S., Yang D., Zhang G. Extensions of Fisher Information and Stam’s Inequality. IEEE Trans. Inf. Theory. 2012;58:1319–1327. doi: 10.1109/TIT.2011.2177563. DOI

Widder D.V. The Laplace Transform. Princeton University Press; Princeton, NJ, USA: 1946.

Knott P.A., Proctor T.J., Hayes A.J., Ralph J.F., Kok P., Dunningham J.A. Local versus Global Strategies in Multi-parameter Estimation. Phys. Rev. A. 2016;94:062312-1–062312-7. doi: 10.1103/PhysRevA.94.062312. DOI

Beck C., Schlögl F. Thermodynamics of Chaotic Systems. Cambridge University Press; Cambridge, UK: 1993.

Gardner R.J. The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 2002;39:355–405. doi: 10.1090/S0273-0979-02-00941-2. DOI

Cover T.M., Thomas J.A. Elements of Information Theory. Wiley-Interscience; Hoboken, NJ, USA: 2006.

Einstein A. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys. 1910;33:1275–1298. doi: 10.1002/andp.19103381612. DOI

De Palma G. The entropy power inequality with quantum conditioning. J. Phys. A Math. Theor. 2019;52:08LT03-1–08LT03-12. doi: 10.1088/1751-8121/aafff4. DOI

Ram E., Sason I. On Rényi Entropy Power Inequalities. IEEE Trans. Inf. Theory. 2016;62:6800–6815. doi: 10.1109/TIT.2016.2616135. DOI

Stam A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control. 1959;2:101–112. doi: 10.1016/S0019-9958(59)90348-1. DOI

Rényi A. Probability Theory. Volume 2 Akadémia Kiado; Budapest, Hungary: 1976. Selected Papers of Alfred Rényi.

Cramér H. Mathematical Methods of Statistics. Princeton University Press; Princeton, NJ, USA: 1946.

Wilk G., Włodarczyk Z. Uncertainty relations in terms of the Tsallis entropy. Phys. Rev. A. 2009;79:062108-1–062108-6. doi: 10.1103/PhysRevA.79.062108. DOI

Schrödinger E. About Heisenberg Uncertainty Relation. Sitzungsber. Preuss. Akad. Wiss. 1930;24:296–303.

Robertson H.P. The Uncertainty Principle. Phys. Rev. 1929;34:163–164. doi: 10.1103/PhysRev.34.163. DOI

Hirschman I.I., Jr. A Note on Entropy. Am. J. Math. 1957;79:152–156. doi: 10.2307/2372390. DOI

D’Ariano M.G., De Laurentis M., Paris M.G.A., Porzio A., Solimeno S. Quantum tomography as a tool for the characterization of optical devices. J. Opt. B. 2002;4:127–132. doi: 10.1088/1464-4266/4/3/366. DOI

Lvovsky A.I., Raymer M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009;81:299–332. doi: 10.1103/RevModPhys.81.299. DOI

Gross D., Liu Y.-K., Flammia S.T., Becker S., Eisert J. Quantum State Tomography via Compressed Sensing. Phys. Rev. Lett. 2010;105:150401-1–150401-4. doi: 10.1103/PhysRevLett.105.150401. PubMed DOI

Beckner W. Inequalities in Fourier Analysis. Ann. Math. 1975;102:159–182. doi: 10.2307/1970980. PubMed DOI PMC

Babenko K.I. An inequality in the theory of Fourier integrals. Am. Math. Soc. Transl. 1962;44:115–128.

Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach; New York, NY, USA: 1993.

Reed M., Simon B. Methods of Modern Mathematical Physics. Volume XI Academic Press; New York, NY, USA: 1975.

Wallace D.L. Asymptotic Approximations to Distributions. Ann. Math. Stat. 1958;29:635–654. doi: 10.1214/aoms/1177706528. DOI

Zolotarev V.M. Mellin—Stieltjes Transforms in Probability Theory. Theory Probab. Appl. 1957;2:444–469. doi: 10.1137/1102031. DOI

Tagliani A. Inverse two-sided Laplace transform for probability density functions. J. Comp. Appl. Math. 1998;90:157–170. doi: 10.1016/S0377-0427(98)00013-2. DOI

Lukacs E. Characteristic Functions. Charles Griffin; London, UK: 1970.

Pal N., Jin C., Lim W.K. Handbook of Exponential and Related Distributions for Engineers and Scientists. Taylor & Francis Group; New York, NY, USA: 2005.

Kira M., Koch S.W., Smith R.P., Hunter A.E., Cundiff S.T. Quantum spectroscopy with Schrödinger-cat states. Nat. Phys. 2011;7:799–804.

Knott P.A., Cooling J.P., Hayes A., Proctor T.J., Dunningham J.A. Practical quantum metrology with large precision gains in the low-photon-number regime. Phys. Rev. A. 2016;93:033859-1–033859-7. doi: 10.1103/PhysRevA.93.033859. DOI

Wei L. On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State. Entropy. 2019;21:539. doi: 10.3390/e21050539. PubMed DOI PMC

Marcinkiewicz J. On a Property of the Gauss law. Math. Z. 1939;44:612–618. doi: 10.1007/BF01210677. DOI

Newest 20 citations...

See more in
Medvik | PubMed

The Statistical Foundations of Entropy

. 2021 Oct 19 ; 23 (10) : . [epub] 20211019

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...