Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-12719S
Grantová Agentura České Republiky
PubMed
33267418
PubMed Central
PMC7515219
DOI
10.3390/e21070704
PII: e21070704
Knihovny.cz E-zdroje
- Klíčová slova
- Lyapunov functional, nonlinear stability, thermodynamically open systems, thermodynamics,
- Publikační typ
- časopisecké články MeSH
Thermodynamical arguments are known to be useful in the construction of physically motivated Lyapunov functionals for nonlinear stability analysis of spatially homogeneous equilibrium states in thermodynamically isolated systems. Unfortunately, the limitation to isolated systems is essential, and standard arguments are not applicable even for some very simple thermodynamically open systems. On the other hand, the nonlinear stability of thermodynamically open systems is usually investigated using the so-called energy method. The mathematical quantity that is referred to as the "energy" is, however, in most cases not linked to the energy in the physical sense of the word. Consequently, it would seem that genuine thermo-dynamical concepts are of no use in the nonlinear stability analysis of thermodynamically open systems. We show that this is not the case. In particular, we propose a construction that in the case of a simple heat conduction problem leads to a physically well-motivated Lyapunov type functional, which effectively replaces the artificial Lyapunov functional used in the standard energy method. The proposed construction seems to be general enough to be applied in complex thermomechanical settings.
Zobrazit více v PubMed
Coleman B.D. On the stability of equilibrium states of general fluids. Arch. Ration. Mech. Anal. 1970;36:1–32. doi: 10.1007/BF00255744. DOI
Gurtin M.E. Thermodynamics and stability. Arch. Ration. Mech. Anal. 1975;59:63–96. doi: 10.1007/BF00281517. DOI
Joseph D.D. Stability of Fluid Motions I. Springer; Berlin/Heidelberg, Germany: 1976. 282p Springer Tracts in Natural Philosophy 27.
Joseph D.D. Stability of Fluid Motions II. Springer; Berlin/Heidelberg, Germany: 1976. 274p Springer Tracts in Natural Philosophy 28.
Straughan B. The Energy Method, Stability, and Nonlinear Convection. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2004. 447p Applied Mathematical Sciences 91.
Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. 1895;186:123–164. doi: 10.1098/rsta.1895.0004. PubMed DOI PMC
Orr W. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid. Proc. R. Ir. Acad. Sect. A. 1907;27:69–138.
Serrin J. On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 1959;3:1–13. doi: 10.1007/BF00284160. DOI
Lin C.C. The Theory of Hydrodynamic Stability. Cambridge University Press; Cambridge, UK: 1955.
Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Clarendon Press; Oxford, UK: 1961. 654p (The International Series of Monographs on Physics).
Yudovich V.I. The Linearization Method in Hydrodynamical Stability Theory. American Mathematical Society; Providence, RI, USA: 1989. 170p Translations of Mathematical Monographs 74.
Drazin P.G., Reid W.H. Hydrodynamic Stability. 2nd ed. Cambridge Mathematical Library, Cambridge University Press; Cambridge, UK: 2004. 605p
Schmid P.J., Henningson D.S. Stability and Transition in Shear Flows. Springer; New York, NY, USA: 2001. Number 142 in Applied Mathematical Sciences.
Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Springer; Berlin, Germany: 2001. 517p Classics in Mathematics.
Evans L.C. Partial Differential Equations. American Mathematical Society; Providence, RI, USA: 1998. 662p Graduate Studies in Mathematics 19.
Lyapunov A.M. Ph.D. Thesis. Moscow University; Moscow, Russia: 1892. The General Problem of the Stability of Motion.
La Salle J., Lefschetz S. Stability by Liapunov’s Direct Method with Applications. Academic Press; Cambridge, MA, USA: 1961.
Henry D. Geometric Theory of Semilinear Parabolic Equations. Springer; Berlin, Germany: 1981. 348p Lecture Notes in Mathematics 940.
Flavin J.N., Rionero S. Qualitative Estimates for Partial Differential Equations: An Introduction. Taylor & Francis; Philadelphia, PA, USA: 1995. Engineering Mathematics.
Glansdorff P., Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley; London, UK: 1971.
Callen H.B. Thermodynamics and an Introduction to Thermostatistics. revised ed. John Wiley & Sons; Hoboken, NJ, USA: 1985.
Müller I. Thermodynamics. Pitman; London, UK: 1985. Interaction of Mechanics and Mathematics.
Rajagopal K.R., Srinivasa A.R. On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004;460:631–651. doi: 10.1098/rspa.2002.1111. DOI
Málek J., Průša V. Derivation of equations for continuum mechanics and thermodynamics of fluids. In: Giga Y., Novotný A., editors. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer; Berlin/Heidelberg, Germany: 2017. pp. 1–70. DOI
Grmela M., Öttinger H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E. 1997;56:6620–6632. doi: 10.1103/PhysRevE.56.6620. DOI
Öttinger H.C., Grmela M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E. 1997;56:6633–6655. doi: 10.1103/PhysRevE.56.6633. DOI
Pavelka M., Klika V., Grmela M. Multiscale Thermo-Dynamics. de Gruyter; Berlin, Germany: 2018.
Dressler M., Edwards B.J., Öttinger H.C. Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta. 1999;38:117–136. doi: 10.1007/s003970050162. DOI
Hron J., Miloš V., Průša V., Souček O., Tůma K. On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. Int. J. Non-Linear Mech. 2017;95:193–208. doi: 10.1016/j.ijnonlinmec.2017.06.011. DOI
Málek J., Průša V., Skřivan T., Süli E. Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids. 2018;30:023101. doi: 10.1063/1.5018172. DOI
Málek J., Rajagopal K.R., Tůma K. Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations. Fluids. 2018;3:69. doi: 10.3390/fluids3040069. DOI
Truesdell C., Noll W. The Non-Linear Field Theories of mechanics. In: Flüge S., editor. Handbuch der Physik. Volume III/3 Springer; Berlin, Germany: 1965.
Clausius R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik und Chemie. 1865;125:353–400. doi: 10.1002/andp.18652010702. DOI
Šilhavý M. The Mechanics and Thermodynamics of Continuous Media. Springer; Berlin, Germany: 1997. 504p Texts and Monographs in Physics.
Ericksen J.L. Introduction to the Thermodynamics of Solids. Springer; New York, NY, USA: 1998. 189p. Applied Mathematical Sciences 131. DOI
Duhem P. Traité d’Énergetique ou Thermodynamique Générale. Gauthier-Villars; Paris, France: 1911.
Gibbs J.W. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 1876;3:108–248. doi: 10.2475/ajs.s3-16.96.441. DOI
Gibbs J.W. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 1878;3:343–524. doi: 10.2475/ajs.s3-16.96.441. DOI
Bruges E.A. Available Energy and the Second Law Analysis. Butterworths; London, UK: 1959.
Sciacovelli A., Verda V., Sciubba E. Entropy generation analysis as a design tool—A review. Renew. Sustain. Energy Rev. 2015;43:1167–1181. doi: 10.1016/j.rser.2014.11.104. DOI
Gurtin M.E. Thermodynamics and the energy criterion for stability. Arch. Ration. Mech. Anal. 1973;52:93–103. doi: 10.1007/BF00282319. DOI
Ericksen J.L. A thermo-kinetic view of elastic stability theory. Int. J. Solids Struct. 1966;2:573–580. doi: 10.1016/0020-7683(66)90039-4. DOI
Friedman A. Partial Differential Equations of Parabolic Type. Prentice-Hall; Upper Saddle River, NJ, USA: 1964. 347p
Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society; Providence, RI, USA: 1968.
Lieberman G.M. Second Order Parabolic Differential Equations. World Scientific; Singapore: 1996. 439p
Dafermos C.M. The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 1979;70:167–179. doi: 10.1007/BF00250353. DOI
Feireisl E., Jin B.J., Novotný A. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 2012;14:717–730. doi: 10.1007/s00021-011-0091-9. DOI
Feireisl E., Novotný A. Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 2012;204:683–706. doi: 10.1007/s00205-011-0490-3. DOI
Feireisl E., Novotný A. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag; Basel, Switzerland: 2009. Singular limits in thermodynamics of viscous fluids; p. xxxvi+382. DOI
Dostalík M., Průša V., Tůma K. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type fluid. arXiv. 20181808.03111
Dostalík M., Průša V. Thermodynamics and stability of non-equilibrium steady states in open systems—Incompressible heat conducting viscous fluid subject to a temperature gradient. arXiv. 20191905.09394 PubMed PMC
Flavin J.N., Rionero S. Asymptotic and other properties of a nonlinear diffusion model. J. Math. Anal. Appl. 1998;228:119–140. doi: 10.1006/jmaa.1998.6121. DOI
Dynamic and Renormalization-Group Extensions of the Landau Theory of Critical Phenomena
Gradient and GENERIC time evolution towards reduced dynamics
Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems