Dynamic and Renormalization-Group Extensions of the Landau Theory of Critical Phenomena
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-22092S
Grantová Agentura České Republiky
UNCE/SCI/023
Univerzita Karlova v Praze
PubMed
33286747
PubMed Central
PMC7597290
DOI
10.3390/e22090978
PII: e22090978
Knihovny.cz E-zdroje
- Klíčová slova
- GENERIC, critical phenomena, entropy, multiscale thermodynamics, renormalization,
- Publikační typ
- časopisecké články MeSH
We place the Landau theory of critical phenomena into the larger context of multiscale thermodynamics. The thermodynamic potentials, with which the Landau theory begins, arise as Lyapunov like functions in the investigation of the relations among different levels of description. By seeing the renormalization-group approach to critical phenomena as inseparability of levels in the critical point, we can adopt the renormalization-group viewpoint into the Landau theory and by doing it bring its predictions closer to results of experimental observations.
Zobrazit více v PubMed
Landau L.D. On the theory of phase transitions. Zhur Eksp. Teor. Fiz. 1937;7:19–32. doi: 10.1038/138840a0. DOI
Callen H. Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley; Hoboken, NJ, USA: 1960.
Arnold V. Catastrophe Theory. Springer; Berlin/Heidelberg, Germany: 1986.
Wilson K. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture. Phys. Rev. B. 1971;4:3174–3184. doi: 10.1103/PhysRevB.4.3174. DOI
Pavelka M., Klika V., Grmela M. Multiscale Thermo-Dynamics. De Gruyter; Berlin, Germany: 2018.
Grmela M., Klika V., Pavelka M. Reductions and extensions in mesoscopic dynamics. Phys. Rev. E. 2015;92:032111. doi: 10.1103/PhysRevE.92.032111. PubMed DOI
Kampen N. Condensation of a classical gas with long-range attraction. Phys. Rev. 1964;135:A362. doi: 10.1103/PhysRev.135.A362. DOI
Grmela M. Renormalization of the van der Waals theory of critical phenomena. Phys. Rev. A. 1976;14:1781–1789. doi: 10.1103/PhysRevA.14.1781. DOI
Grmela M. Kinetic approach to phase transitions. J. Stat. Phys. 1971;3:347–364. doi: 10.1007/BF01011389. DOI
Landau L., Lifschitz E. Statistical Physics. Pergamon Press; New York, NY, USA: 1969. Number pt. 1 in Course of Theoretical Physics.
Gorban A., Karlin I. Invariant Manifolds for Physical and Chemical Kinetics. Springer; Berlin/Heidelberg, Germany: 2005. Lecture Notes in Physics.
Klika V., Pavelka M., Vágner P., Grmela M. Dynamic Maximum Entropy Reduction. Entropy. 2019;21:715. doi: 10.3390/e21070715. PubMed DOI PMC
Pavelka M., Klika V., Grmela M. Ehrenfest regularization of Hamiltonian systems. Phys. D Nonlinear Phenom. 2019;399:193–210. doi: 10.1016/j.physd.2019.06.006. DOI
Pavelka M., Klika V., Grmela M. Generalization of the dynamical lack-of-fit reduction. J. Stat. Phys. 2020;181:19–52. doi: 10.1007/s10955-020-02563-7. DOI
Grmela M., Klika V., Pavelka M. Gradient and GENERIC evolution towards reduced dynamics. Phil. Trans. R. Soc. A. 2020;378:20190472. doi: 10.1098/rsta.2019.0472. PubMed DOI PMC
Boussinesq J. Théorie de l’Écoulement Tourbillonnant Et Tumultueux Des Liquides Dans Les Lits Rectilignes a Grande Section. Gauthier-Villars et Fils; Paris, France: 1897.
Lebon G., Jou D., Vázquez J. Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer; London, UK: 2008.
Bulíček M., Málek J., Průša V. Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems. Entropy. 2019;21:704. doi: 10.3390/e21070704. PubMed DOI PMC
Yeo L.Y., Matar O.K., de Ortiz E.S.P., Hewitt G.F. Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique. Chem. Eng. Sci. 2002;57:1069. doi: 10.1016/S0009-2509(01)00443-2. PubMed DOI
Brauner N., Ullmann A. Modeling of phase inversion phenomenon in two-phase pipe flows. Int. J. Multiph. Flow. 2002;28:1177. doi: 10.1016/S0301-9322(02)00017-4. DOI
Grmela M. Externally Driven Macroscopic Systems: Dynamics Versus Thermodynamics. J. Stat. Phys. 2017;166:282–316. doi: 10.1007/s10955-016-1694-6. DOI
Piela K., Oomsa G., Sengers J. Phenomenological description of phase inversion. Phys. Rev. E. 2009;79:021403. doi: 10.1103/PhysRevE.79.021403. PubMed DOI
Boltenhagen P., Hu Y., Matthys E., Pine D. Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 1997;79:2359–2362. doi: 10.1103/PhysRevLett.79.2359. DOI
Janečka A., Pavelka M. Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics. Contin. Mech. Thermodyn. 2018;30:917–941. doi: 10.1007/s00161-018-0667-1. DOI
Le Roux C., Rajagopal K. Shear flows of a new class of power-law fluids. Appl. Math. 2013;58:153–177. doi: 10.1007/s10492-013-0008-4. DOI
Janečka A., Málek J., Průša V., Tierra G. Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. Acta Mech. 2019;230:729–747. doi: 10.1007/s00707-019-2372-y. DOI
Green M.S. Exact Renormalization in the Statistical Mechanics of Fluids. Phys. Rev. A. 1973;8:1998. doi: 10.1103/PhysRevA.8.1998. DOI
Ginzburg V., Landau L. On the theory of superconductivity. Zhur Eksp. Theor. Fiz. 1950;20:1064–1082.
Waldram J. The Theory of Thermodynamics. Cambridge University Press; Cambridge, UK: 1985.
González D., Chinesta F., Cueto E. Learning corrections for hyperelastic models from data. Front. Mater. 2019;6:14. doi: 10.3389/fmats.2019.00014. DOI
The Statistical Foundations of Entropy