Dynamic and Renormalization-Group Extensions of the Landau Theory of Critical Phenomena

. 2020 Sep 02 ; 22 (9) : . [epub] 20200902

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33286747

Grantová podpora
20-22092S Grantová Agentura České Republiky
UNCE/SCI/023 Univerzita Karlova v Praze

We place the Landau theory of critical phenomena into the larger context of multiscale thermodynamics. The thermodynamic potentials, with which the Landau theory begins, arise as Lyapunov like functions in the investigation of the relations among different levels of description. By seeing the renormalization-group approach to critical phenomena as inseparability of levels in the critical point, we can adopt the renormalization-group viewpoint into the Landau theory and by doing it bring its predictions closer to results of experimental observations.

Zobrazit více v PubMed

Landau L.D. On the theory of phase transitions. Zhur Eksp. Teor. Fiz. 1937;7:19–32. doi: 10.1038/138840a0. DOI

Callen H. Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley; Hoboken, NJ, USA: 1960.

Arnold V. Catastrophe Theory. Springer; Berlin/Heidelberg, Germany: 1986.

Wilson K. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture. Phys. Rev. B. 1971;4:3174–3184. doi: 10.1103/PhysRevB.4.3174. DOI

Pavelka M., Klika V., Grmela M. Multiscale Thermo-Dynamics. De Gruyter; Berlin, Germany: 2018.

Grmela M., Klika V., Pavelka M. Reductions and extensions in mesoscopic dynamics. Phys. Rev. E. 2015;92:032111. doi: 10.1103/PhysRevE.92.032111. PubMed DOI

Kampen N. Condensation of a classical gas with long-range attraction. Phys. Rev. 1964;135:A362. doi: 10.1103/PhysRev.135.A362. DOI

Grmela M. Renormalization of the van der Waals theory of critical phenomena. Phys. Rev. A. 1976;14:1781–1789. doi: 10.1103/PhysRevA.14.1781. DOI

Grmela M. Kinetic approach to phase transitions. J. Stat. Phys. 1971;3:347–364. doi: 10.1007/BF01011389. DOI

Landau L., Lifschitz E. Statistical Physics. Pergamon Press; New York, NY, USA: 1969. Number pt. 1 in Course of Theoretical Physics.

Gorban A., Karlin I. Invariant Manifolds for Physical and Chemical Kinetics. Springer; Berlin/Heidelberg, Germany: 2005. Lecture Notes in Physics.

Klika V., Pavelka M., Vágner P., Grmela M. Dynamic Maximum Entropy Reduction. Entropy. 2019;21:715. doi: 10.3390/e21070715. PubMed DOI PMC

Pavelka M., Klika V., Grmela M. Ehrenfest regularization of Hamiltonian systems. Phys. D Nonlinear Phenom. 2019;399:193–210. doi: 10.1016/j.physd.2019.06.006. DOI

Pavelka M., Klika V., Grmela M. Generalization of the dynamical lack-of-fit reduction. J. Stat. Phys. 2020;181:19–52. doi: 10.1007/s10955-020-02563-7. DOI

Grmela M., Klika V., Pavelka M. Gradient and GENERIC evolution towards reduced dynamics. Phil. Trans. R. Soc. A. 2020;378:20190472. doi: 10.1098/rsta.2019.0472. PubMed DOI PMC

Boussinesq J. Théorie de l’Écoulement Tourbillonnant Et Tumultueux Des Liquides Dans Les Lits Rectilignes a Grande Section. Gauthier-Villars et Fils; Paris, France: 1897.

Lebon G., Jou D., Vázquez J. Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer; London, UK: 2008.

Bulíček M., Málek J., Průša V. Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems. Entropy. 2019;21:704. doi: 10.3390/e21070704. PubMed DOI PMC

Yeo L.Y., Matar O.K., de Ortiz E.S.P., Hewitt G.F. Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique. Chem. Eng. Sci. 2002;57:1069. doi: 10.1016/S0009-2509(01)00443-2. PubMed DOI

Brauner N., Ullmann A. Modeling of phase inversion phenomenon in two-phase pipe flows. Int. J. Multiph. Flow. 2002;28:1177. doi: 10.1016/S0301-9322(02)00017-4. DOI

Grmela M. Externally Driven Macroscopic Systems: Dynamics Versus Thermodynamics. J. Stat. Phys. 2017;166:282–316. doi: 10.1007/s10955-016-1694-6. DOI

Piela K., Oomsa G., Sengers J. Phenomenological description of phase inversion. Phys. Rev. E. 2009;79:021403. doi: 10.1103/PhysRevE.79.021403. PubMed DOI

Boltenhagen P., Hu Y., Matthys E., Pine D. Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 1997;79:2359–2362. doi: 10.1103/PhysRevLett.79.2359. DOI

Janečka A., Pavelka M. Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics. Contin. Mech. Thermodyn. 2018;30:917–941. doi: 10.1007/s00161-018-0667-1. DOI

Le Roux C., Rajagopal K. Shear flows of a new class of power-law fluids. Appl. Math. 2013;58:153–177. doi: 10.1007/s10492-013-0008-4. DOI

Janečka A., Málek J., Průša V., Tierra G. Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. Acta Mech. 2019;230:729–747. doi: 10.1007/s00707-019-2372-y. DOI

Green M.S. Exact Renormalization in the Statistical Mechanics of Fluids. Phys. Rev. A. 1973;8:1998. doi: 10.1103/PhysRevA.8.1998. DOI

Ginzburg V., Landau L. On the theory of superconductivity. Zhur Eksp. Theor. Fiz. 1950;20:1064–1082.

Waldram J. The Theory of Thermodynamics. Cambridge University Press; Cambridge, UK: 1985.

González D., Chinesta F., Cueto E. Learning corrections for hyperelastic models from data. Front. Mater. 2019;6:14. doi: 10.3389/fmats.2019.00014. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Statistical Foundations of Entropy

. 2021 Oct 19 ; 23 (10) : . [epub] 20211019

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...