High-Resolution Strain/Stress Measurements by Three-Axis Neutron Diffractometer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33265936
PubMed Central
PMC7730619
DOI
10.3390/ma13235449
PII: ma13235449
Knihovny.cz E-zdroje
- Klíčová slova
- bent crystal analyzer, bent crystal monochromator, high resolution, neutron diffraction, residual stresses, three axis setting,
- Publikační typ
- časopisecké články MeSH
Resolution properties of the unconventional high-resolution neutron diffraction three-axis setup for strain/stress measurements of large bulk polycrystalline samples are presented. Contrary to the conventional two-axis setups, in this case, the strain measurement on a sample situated on the second axis is carried out by rocking the bent perfect crystal (BPC) analyzer situated on the third axis of the diffractometer. Thus, the so-called rocking curve provides the sample diffraction profile. The neutron signal coming from the analyzer is registered by a point detector. This new setup provides a considerably higher resolution (at least by a factor of 5), which however, requires a much longer measurement time. The high-resolution neutron diffraction setting can be effectively used, namely, for bulk gauge volumes up to several cubic centimeters, and for plastic deformation studies on the basis of the analysis of diffraction line profiles, thus providing average values of microstructure characteristics over the irradiated gauge volume.
Zobrazit více v PubMed
Noyan I.C., Cohen J.B. Residual Stress: Measurement by Diffraction and Interpretation. 1st ed. Springer; New York, NY, USA: 1987.
Hutchings M.T., Krawitz A.D. Measurement of Residual and Applied Stress Using Neutron Diffraction. In: Hutchings M.T., Krawitz A.D., editors. NATO ASI Series. Volume 26 Kluwer Academic Publisher; Amsterdam, The Netherlands: 1992.
Stelmukh V., Edwards L., Santisteban J.R., Ganguly S., Fitzpatrick M.E. Weld stress mapping using neutron and synchrotron X-ray diffraction. Mater. Sci. Forum. 2002;404–407:599–604. doi: 10.4028/www.scientific.net/MSF.404-407.599. DOI
Mikula P., Vrána M., Lukáš P., Šaroun J., Wagner V. High-resolution neutron powder diffractometry on samples of small dimensions. Mater. Sci. Forum. 1996;228–231:269–274. doi: 10.4028/www.scientific.net/MSF.228-231.269. DOI
Mikula P., Vrána M., Lukáš P., Šaroun J., Strunz P., Ullrich H.J., Wagner V. Neutron diffractometer exploiting Bragg diffraction optics—A high resolution strain scanner; Proceedings of the ICRS-5 Conference; Linköping, Sweden. 16–18 June 1997; pp. 721–725.
Seong B.S., Em V., Mikula P., Šaroun J., Kang M.H. Unconventional performance of a highly luminous strain/stress scanner for high resolution studies. Mater. Sci. Forum. 2011;681:426–430. doi: 10.4028/www.scientific.net/MSF.681.426. DOI
Mikula P., Šaroun J., Ryukhtin V., Stammers J. An alternative neutron diffractometer performance for strain/stress measurements. Powder Diffr. 2020;35:185–189. doi: 10.1017/S0885715620000329. DOI
Vrána M., Lukáš P., Mikula P., Kulda J. Bragg diffraction optics in high-resolution strain measurements. Nucl. Instrum. Methods Phys. Res. A. 1994;338:125–131. doi: 10.1016/0168-9002(94)90172-4. DOI
Macek K., Lukáš P., Janovec J., Mikula P., Strunz P., Vrána M., Zaffagnini M. Austenite content and dislocation density in electron beam welds of a stainless maraging steel. Mater. Sci. Eng. A. 1996;208:131–138. doi: 10.1016/0921-5093(95)10047-4. DOI
Hirschi K., Ceretti M., Lukáš P., Ji N., Braham C., Lodini A. Microstrain measurement in plastically deformed austenitic steel. Textures Microstruct. 1999;33:219–230. doi: 10.1155/TSM.33.219. DOI
Delhez R., de Keijser T.H., Mittemeijer E.J. Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius’ Z. Anal. Chem. 1982;312:1–16. doi: 10.1007/BF00482725. DOI
Davydov V., Lukáš P., Strunz P., Kužel R. Single-line diffraction profile analysis method used for evaluation of microstructural parameters in the plain ferritic steel upon tensile straining. Mater. Sci. Forum. 2008;571–572:181–188. doi: 10.4028/www.scientific.net/MSF.571-572.181. DOI
Special Issue: Selected Papers from Experimental Stress Analysis 2020