Accurate prediction of kinase-substrate networks using knowledge graphs

. 2020 Dec ; 16 (12) : e1007578. [epub] 20201203

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33270624
Odkazy

PubMed 33270624
PubMed Central PMC7738173
DOI 10.1371/journal.pcbi.1007578
PII: PCOMPBIOL-D-19-02065
Knihovny.cz E-zdroje

Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid high-confidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).

Zobrazit více v PubMed

Kolch W, Halasz M, Granovskaya M, Kholodenko BN. The dynamic control of signal transduction networks in cancer cells. Nature Reviews Cancer. 2015;15(9):515 10.1038/nrc3983 PubMed DOI

Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nature Reviews Drug Discovery. 2018;17(5):353 10.1038/nrd.2018.21 PubMed DOI

Cohen P, Alessi DR. Kinase drug discovery–what’s next in the field? ACS chemical biology. 2012;8(1):96–104. PubMed PMC

Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends in pharmacological sciences. 2015;36(7):422–439. 10.1016/j.tips.2015.04.005 PubMed DOI

Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, et al. Phospho. ELM: a database of phosphorylation sites—update 2011. Nucleic acids research. 2011;39(suppl 1):D261–D267. 10.1093/nar/gkq1104 PubMed DOI PMC

Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM, et al. Systematic discovery of in vivo phosphorylation networks. Cell. 2007;129(7):1415–1426. 10.1016/j.cell.2007.05.052 PubMed DOI PMC

Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic acids research. 2003;31(13):3635–3641. 10.1093/nar/gkg584 PubMed DOI PMC

Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Molecular & cellular proteomics. 2008;7(9):1598–1608. 10.1074/mcp.M700574-MCP200 PubMed DOI PMC

Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4(6):1633–1649. 10.1002/pmic.200300771 PubMed DOI

Horn H, Schoof EM, Kim J, Robin X, Miller ML, Diella F, et al. KinomeXplorer: an integrated platform for kinome biology studies. Nature methods. 2014;11(6):603–604. 10.1038/nmeth.2968 PubMed DOI

Song J, Wang H, Wang J, Leier A, Marquez-Lago T, Yang B, et al. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Scientific Reports. 2017;7(1):6862 10.1038/s41598-017-07199-4 PubMed DOI PMC

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. science. 2001;291(5507):1304–1351. 10.1126/science.1058040 PubMed DOI

Wang Q, Mao Z, Wang B, Guo L. Knowledge graph embedding: A survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering. 2017;29(12):2724–2743. 10.1109/TKDE.2017.2754499 DOI

Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic acids research. 2015;43(D1):D512–D520. 10.1093/nar/gku1267 PubMed DOI PMC

Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G. Complex embeddings for simple link prediction. arXiv preprint arXiv:160606357. 2016;.

Bergstra J, Bengio Y. Random search for hyper-parameter optimization. Journal of Machine Learning Research. 2012;13(Feb):281–305.

Needham EJ, Parker BL, Burykin T, James DE, Humphrey SJ. Illuminating the dark phosphoproteome. Sci Signal. 2019;12(565):eaau8645 10.1126/scisignal.aau8645 PubMed DOI

Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning. ACM; 2006. p. 233–240.

Hijazi M, Smith R, Rajeeve V, Bessant C, Cutillas PR. Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring. Nature Biotechnology. 2020; p. 1–10. PubMed

Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Annals of medicine. 2014;46(6):372–383. 10.3109/07853890.2014.912836 PubMed DOI

Fallahi E, O’Driscoll NA, Matallanas D. The MST/Hippo pathway and cell death: a non-canonical affair. Genes. 2016;7(6):28 10.3390/genes7060028 PubMed DOI PMC

Gomez M, Gomez V, Hergovich A. The Hippo pathway in disease and therapy: cancer and beyond. Clinical and translational medicine. 2014;3(1):22. PubMed PMC

Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annual review of medicine. 2016;67:11–28. 10.1146/annurev-med-062913-051343 PubMed DOI

Technology CS. PI3K / Akt Substrates Table;. https://www.cellsignal.com/contents/resources-reference-tables/pi3k-akt-substrates-table/science-tables-akt-substrate.

Mantamadiotis T, Papalexis N, Dworkin S. CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. Bioessays. 2012;34(4):293–300. 10.1002/bies.201100133 PubMed DOI

Wang J, Ma L, Weng W, Qiao Y, Zhang Y, He J, et al. Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology. 2013;58(3):1011–1020. 10.1002/hep.26420 PubMed DOI

Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T, Kolch W. Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer research. 2010; p. 0008–5472. PubMed PMC

Von Kriegsheim A, Baiocchi D, Birtwistle M, Sumpton D, Bienvenut W, Morrice N, et al. Cell fate decisions are specified by the dynamic ERK interactome. Nature cell biology. 2009;11(12):1458 10.1038/ncb1994 PubMed DOI PMC

Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Molecular cell. 2007;27(6):962–975. 10.1016/j.molcel.2007.08.008 PubMed DOI PMC

Embogama DM, Pflum MKH. K-BILDS: A Kinase Substrate Discovery Tool. ChemBioChem. 2017;18(1):136–141. 10.1002/cbic.201600511 PubMed DOI PMC

Hernandez-Armenta C, Ochoa D, Gonçalves E, Saez-Rodriguez J, Beltrao P. Benchmarking substrate-based kinase activity inference using phosphoproteomic data. Bioinformatics. 2017;33(12):1845–1851. 10.1093/bioinformatics/btx082 PubMed DOI PMC

Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data In: Advances in neural information processing systems; 2013. p. 2787–2795.

Yang B, Yih Wt, He X, Gao J, Deng L. Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:14126575. 2014;.

Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–1934. 10.1126/science.1075762 PubMed DOI

Nickel M, Murphy K, Tresp V, Gabrilovich E. A Review of Relational Machine Learning for Knowledge Graphs. Proceedings of the IEEE. 2016;104(1):11–33. 10.1109/JPROC.2015.2483592 DOI

Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek Ez, Murray B, et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic acids research. 2011;40(D1):11–22. 10.1093/nar/gkr1122 PubMed DOI PMC

Boudewijn MT, Coffer PJ, et al. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 1995;376(6541):599 10.1038/376599a0 PubMed DOI

Turriziani B, Garcia-Munoz A, Pilkington R, Raso C, Kolch W, von Kriegsheim A. On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology. 2014;3(2):320–332. 10.3390/biology3020320 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...