Losing stinks! The effect of competition outcome on body odour quality
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32306874
PubMed Central
PMC7209932
DOI
10.1098/rstb.2019.0267
Knihovny.cz E-zdroje
- Klíčová slova
- cortisol, dominance, hierarchy, olfaction, smell, testosterone,
- MeSH
- bojové sporty MeSH
- čich * MeSH
- čichová percepce * MeSH
- dospělí MeSH
- hydrokortison krev MeSH
- kompetitivní chování fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- odoranty analýza MeSH
- testosteron krev MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- hydrokortison MeSH
- testosteron MeSH
Dominance hierarchy is often established via repeated agonistic encounters where consistent winners are considered dominant. Human body odour contains cues to psychological dominance and competition, but it is not known whether competition outcome (a marker of a change in dominance hierarchy) affects the hedonic quality of human axillary odour. Therefore, we investigated the effect of winning and losing on odour quality. We collected odour samples from Mixed Martial Arts fighters approximately 1 h before and immediately after a match. Raters then assessed samples for pleasantness, attractiveness, masculinity and intensity. We also obtained data on donors' affective state and cortisol and testosterone levels, since these are known to be associated with competition and body odour quality. Perceived body odour pleasantness, attractiveness and intensity significantly decreased while masculinity increased after a match irrespective of the outcome. Nonetheless, losing a match affected the pleasantness of body odour more profoundly, though bordering formal level of significance. Moreover, a path analysis revealed that match loss led to a decrease in odour attractiveness, which was mediated by participants' negative affective states. Our study suggests that physical competition and to some extent also its outcome affect the perceived quality of human body odour in specific real-life settings, thus providing cues to dominance-related characteristics. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Faculty of Science Charles University Viničná 7 Prague 128 43 Czech Republic
National Institute of Mental Health Topolová 748 Klecany 250 67 Czech Republic
Zobrazit více v PubMed
Drews C. 1993. The concept and definition of dominance in animal behaviour. Behaviour 125, 283–313. (10.1163/156853993x00290) DOI
Parker GA. 1974. Assessment strategy and the evolution of animal conflicts. Theor. Biol. 47, 223–243. (10.1016/0022-5193(74)90111-8) PubMed DOI
Cheng KM, Burns JT. 2007. Dominance relationship and mating behavior of domestic cocks: a model to study mate-guarding and sperm competition in birds. Condor 90, 697–704. (10.2307/1368360) DOI
Farentinos R. 1972. Social dominance and mating activity in the tassel-eared squirrel (Sciurus aberti ferreus). Anim. Behav. 20, 316–326. (10.1016/s0003-3472(72)80053-8) PubMed DOI
Benzon T, Smith R. 1974. Male dominance hierarchies and their possible effect upon breeding in cheetahs. Int. Zoo. Yearb. 14, 174–179. (10.1111/j.1748-1090.1974.tb00813.x) DOI
Kucera TE. 1978. Social behavior and breeding system of the desert mule deer. J. Mammal. 59, 463–476. (10.2307/1380224) DOI
Perachio AA, Alexander M, Marr LD. 1973. Hormonal and social factors affecting evoked sexual behavior in rhesus monkeys. Am. J. Phys. Anthropol. 38, 227–232. (10.1002/ajpa.1330380215) PubMed DOI
Guhl AM, Warren DC. 1946. Number of offspring sired by cockerels related to social dominance in chickens. Poult. Sci. 25, 460–472. (10.3382/ps.0250460) DOI
Hurst JL. 1987. Behavioural variation in wild house mice Mus domesticus Rutty: a quantitative assessment of female social organization. Anim. Behav. 35, 1846–1857. (10.1016/s0003-3472(87)80077-5) DOI
D'Amato FR. 1988. Effects of male social status on reproductive success and on behavior in mice (Mus musculus). J. Comp. Psychol. 102, 146–151. (10.1037/0735-7036.102.2.146) PubMed DOI
Dewsbury DA. 1981. Social dominance, copulatory behavior, and differential reproduction in deer mice (Peromyscus maniculatus). J. Comp. Physiol. Psychol. 95, 880–895. (10.1037/h0077842) DOI
Huck UW, Lisk RD, Allison JC, Dongen CGV. 1986. Determinants of mating success in the golden hamster (Mesocricetus auratus): social dominance and mating tactics under seminatural conditions. Anim. Behav. 34, 971–989. (10.1016/s0003-3472(86)80156-7) DOI
Baldwin J. 1968. The social behavior of adult male squirrel monkeys (Aimiri sciureus) in a seminatural environment. Folia Primatol. 9, 281–314. (10.1159/000155184) PubMed DOI
Gallup GG, Waite MS. 1970. Some preliminary observations on the behavior of Mongolian gerbils (Meriones unguiculatus) under seminatural conditions. Psychon. Sci. 20, 25–26. (10.3758/bf03335581) DOI
Mossman CA, Drickamer LC. 1996. Odor preferences of female house mice (Mus domesticus) in seminatural enclosures. J. Comp. Psychol. 110, 131–138. (10.1037/0735-7036.110.2.131) PubMed DOI
Drickamer LC. 1997. Responses to odors of dominant and subordinate house mice (Mus domesticus) in live traps and responses to odors in live traps by dominant and subordinate males. J. Chem. Ecol. 23, 2493–2506. (10.1023/b:joec.0000006662.93635.25) DOI
Hurst J. 1993. The priming effects of urine substrate marks on interactions between male house mice, Mus musculus domesticus Schwarz & Schwarz. Anim. Behav. 45, 55–81. (10.1006/anbe.1993.1007) DOI
Coopersmith CB, Lenington S. 1992. Female preferences based on male quality in house mice: interaction between male dominance rank and t-complex genotype. Ethology 90, 1–16. (10.1111/j.1439-0310.1992.tb00815.x) DOI
Jones RB, Nowell NW. 1989. Aversive potency of urine from dominant and subordinate male laboratory mice Mus musculus: resolution of a conflict. Aggressive Behav. 15, 291–296. (10.1002/ab.2480150404) DOI
Gosling L, Atkinson N, Collins S, Roberts R, Walters R. 1996. Avoidance of scent-marked areas depends on the intruder's body size. Behaviour 133, 491–502. (10.1163/156853996x00170) DOI
Gosling LM, Atkinson NW, Dunn S, Collins SA. 1996. The response of subordinate male mice to scent marks varies in relation to their own competitive ability. Anim. Behav. 52, 1185–1191. (10.1006/anbe.1996.0266) DOI
Gosling LM, McKay HV. 1990. Competitor assessment by scent matching: an experimental test. Behav. Ecol. Sociobiol. 26, 415–420. (10.1007/bf00170899) DOI
Wolff RJ. 1985. Mating behaviour and female choice: their relation to social structure in wild caught house mice (Mus musculus) housed in a semi-natural environment. J. Zool. 207, 43–51. (10.1111/j.1469-7998.1985.tb04914.x) DOI
Parmigiani S, Brunoni V, Pasquali A. 1982. Socio-sexual preferences of female mice (Mus musculus domesticus): the influence of social aggressive capacities of isolated or grouped males. Bolletino di Zool. 49, 73–78. (10.1080/11250008209439374) DOI
Kruczek M. 1997. Male rank and female choice in the bank vole, Clethrionomys glareolus. Behav. Process. 40, 171–176. (10.1016/s0376-6357(97)00785-7) PubMed DOI
Hurst JL. 1990. Urine marking in populations of wild house mice Mus domesticus Rutty. III. Communication between the sexes. Anim. Behav. 40, 209–243. (10.1016/s0003-3472(05)80918-2) DOI
Drickamer LC. 1992. Oestrous female house mice discriminate dominant from subordinate males and sons of dominant from sons of subordinate males by odour cues. Anim. Behav. 43, 868–870. (10.1016/s0003-3472(05)80212-x) DOI
William HU, Banks EM, Wang SC. 1981. Olfactory discrimination of social status in the brown lemming. Behav. Neural Biol. 33, 364–371. (10.1016/s0163-1047(81)92123-3) DOI
Hurst JL, Hall S, Roberts R, Christian C. 1996. Social organization in the aboriginal house mouse, Mus spretus Lataste: behavioural mechanisms underlying the spatial dispersion of competitors. Anim. Behav. 51, 327–344. (10.1006/anbe.1996.0032) DOI
Carr WJ, Martorano RD, Krames L. 1970. Responses of mice to odors associated with stress. J. Comp. Physiol. Psychol. 71, 223–228. (10.1037/h0029164) PubMed DOI
Havlicek J, Roberts SC, Flegr J. 2005. Women's preference for dominant male odour: effects of menstrual cycle and relationship status. Biol. Lett. 1, 256–259. (10.1098/rsbl.2005.0332) PubMed DOI PMC
Sorokowska A, Sorokowski P, Szmajke A. 2012. Does personality smell? Accuracy of personality assessments based on body odour. Eur. J. Pers. 26, 496–503. (10.1002/per.848) DOI
Sorokowska A. 2013. Seeing or smelling? Assessing personality on the basis of different stimuli. Pers. Indiv. Differ. 55, 175–179. (10.1016/j.paid.2013.02.026) DOI
Sorokowska A. 2013. Assessing personality using body odor: differences between children and adults. J. Nonverbal. Behav. 37, 153–163. (10.1007/s10919-013-0152-2) PubMed DOI PMC
Sorokowska A, Sorokowski P, Havlíček J. 2016. Body odor based personality judgments: the effect of fragranced cosmetics. Front. Psychol. 7, 530 (10.3389/fpsyg.2016.00530) PubMed DOI PMC
Gray A, Jackson DN, Mckinlay JB. 1991. The relation between dominance, anger, and hormones in normally aging men: results from the Massachusetts Male Aging Study. Psychosom. Med. 385, 375–385. (10.1097/00006842-199107000-00003) PubMed DOI
Adolph D, Schlösser S, Hawighorst M, Pause BM. 2010. Chemosensory signals of competition increase the skin conductance response in humans. Physiol. Behav. 101, 666–671. (10.1016/j.physbeh.2010.08.004) PubMed DOI
Mutic S, Parma V, Brünner YF, Freiherr J. 2016. You smell dangerous: communicating fight responses through human chemosignals of aggression. Chem. Senses 41, 35–43. (10.1093/chemse/bjv058) PubMed DOI
Mutic S, Brünner YF, Rodriguez-Raecke R, Wiesmann M, Freiherr J. 2017. Chemosensory danger detection in the human brain: body odor communicating aggression modulates limbic system activation. Neuropsychologia. 99, 187–198. (10.1016/j.neuropsychologia.2017.02.018) PubMed DOI
Setchell JM, Dixson AF. 2001. Arrested development of secondary sexual adornments in subordinate adult male mandrills (Mandrillus sphinx). Am. J. Phys. Anthropol. 115, 245–252. (10.1002/ajpa.1079) PubMed DOI
Muehlenbein MP, Watts DP, Whitten PL. 2004. Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. Am. J. Primatol. 64, 71–82. (10.1002/ajp.20062) PubMed DOI
Setchell JM, Smith T, Wickings EJ, Knapp LA. 2008. Social correlates of testosterone and ornamentation in male mandrills. Horm. Behav. 54, 365–372. (10.1016/j.yhbeh.2008.05.004) PubMed DOI
Ferkin MH, Sorokin ES, Renfroe MW, Johnston RE. 1994. Attractiveness of male odors to females varies directly with plasma testosterone concentration in meadow voles. Physiol. Behav. 55, 347–353. (10.1016/0031-9384(94)90145-7) PubMed DOI
Setchell JM, Vaglio S, Moggi-Cecchi J, Boscaro F, Calamai L, Knapp LA. 2010. Chemical composition of scent-gland secretions in an Old World monkey (Mandrillus sphinx): influence of sex, male status, and individual identity. Chem. Senses 35, 205–220. (10.1093/chemse/bjp105) PubMed DOI
Jones RB, Nowell NW. 1973. Aversive effects of the urine of a male mouse upon the investigatory behaviour of its defeated opponent. Anim. Behav. 21, 707–710. (10.1016/s0003-3472(73)80095-8) PubMed DOI
Even MD, Vom Saal FS. 1992. Seminal vesicle and preputial gland response to steroids in adult male mice is influenced by prior intrauterine position. Physiol. Behav. 51, 11–16. (10.1016/0031-9384(92)90198-b) PubMed DOI
Novotny M, Harvey S. 1990. Chemistry of male dominance in the house mouse, Mus domesticus. Cell. Mol. Life Sci. 46, 109–113. (10.1007/bf01955433) PubMed DOI
Hurst JL, Robertson DHL, Tolladay U, Beynon RJ. 1998. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297. (10.1006/anbe.1997.0650) PubMed DOI
Hayes RA, Richardson BJ, Wyllie SG. 2003. To fix or not to fix: the role of 2-phenoxyethanol in rabbit, Oryctolagus cuniculus, chin gland secretion. J. Chem. Ecol. 29, 1051–1064. (10.1023/a:1023836319677) PubMed DOI
Salvador A. 2005. Coping with competitive situations in humans. Neurosci. Biobehav. Rev. 29, 195–205. (10.1016/j.neubiorev.2004.07.004) PubMed DOI
Wingfield JC, Hegner RE, Dufty AM, Ball GF. 1990. The ‘challenge hypothesis': theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am. Nat. 136, 829–846. (10.1086/285134) DOI
Mazur A, Booth A. 1998. Testosterone and dominance in men. Behav. Brain Sci. 21, 353–363. (10.1017/s0140525x98001228) PubMed DOI
Wingfield JC. 2017. The challenge hypothesis: Where it began and relevance to humans. Horm. Behav. 92, 9–12. (10.1016/j.yhbeh.2016.11.008) PubMed DOI
Goymann W, Moore IT, Oliveira RF. 2019. Challenge hypothesis 2.0: a fresh look at an established idea. Bioscience 69, 432–442. (10.1093/biosci/biz041) DOI
Archer J. 1988. The behavioural biology of aggression, 1st edn Cambridge, UK: Cambridge University Press.
Martinez M, Calvo-Torrent A, Pico-Alfonso MA. 1998. Social defeat and subordination as models of social stress in laboratory rodents: a review. Aggressive Behav. 24, 241–256. (10.1002/(SICI)1098-2337(1998)24:4<241::AID-AB1>3.0.CO;2-M) DOI
Beehner JC, Bergman TJ, Cheney DL, Seyfarth RM, Whitten PL. 2006. Testosterone predicts future dominance rank and mating activity among male chacma baboons. Behav. Ecol. Sociobiol. 59, 469–479. (10.1007/s00265-005-0071-2) DOI
Booth A, Shelley G, Mazur A, Tharp G, Kittok R. 1989. Testosterone, and winning and losing in human competition. Horm. Behav. 23, 556–571. (10.1016/0018-506x(89)90042-1) PubMed DOI
Aguilar R, Jiménez M, Alvero-Cruz J. 2013. Testosterone, cortisol and anxiety in elite field hockey players. Physiol. Behav. 119, 38–42. (10.1016/j.physbeh.2013.05.043) PubMed DOI
Mazur A, Booth A, Dabbs JM Jr. 1992. Testosterone and chess competition. Soc. Psychol. Q. 55, 70–77. (10.2307/2786687) DOI
Geniole SN, Bird BM, Ruddick EL, Carré JM. 2017. Effects of competition outcome on testosterone concentrations in humans: an updated metaanalysis. Horm. Behav. 92, 37–50. (10.1016/j.yhbeh.2016.10.002) PubMed DOI
Serrano MA, Salvador A, González-Bono E, Sanchís C, Suay F. 2000. Hormonal responses to competition. Psicothema 12, 440–444.
van der Meij L, Buunk AP, Almela M, Salvador A. 2010. Testosterone responses to competition: the opponent's psychological state makes it challenging. Biol. Psychol. 84, 330–335. (10.1016/j.biopsycho.2010.03.017) PubMed DOI
Jiménez M, Aguilar R, Alvero-Cruz JR. 2012. Effects of victory and defeat on testosterone and cortisol response to competition: evidence for same response patterns in men and women. Psychoneuroendocrinol. 37, 1577–1581. (10.1016/j.psyneuen.2012.02.011) PubMed DOI
Mehta PH, Prasad S. 2015. The dual-hormone hypothesis: a brief review and future research agenda. Curr. Opin. Behav. Sci. 3, 163–168. (10.1016/j.cobeha.2015.04.008) DOI
Zilioli S, Watson NV. 2013. Winning isn't everything: mood and testosterone regulate the cortisol response in competition. PLoS ONE 8, e52582 (10.1371/journal.pone.0052582) PubMed DOI PMC
Salvador A, Simón V, Suay F, Llorens L. 1987. Testosterone and cortisol responses to competitive fighting in human males: a pilot study. Aggressive Behav. 13, 9–13. (10.1002/1098-2337(1987)13:1<9::AID-AB2480130103>3.0.CO;2-4) DOI
Filaire E, Maso F, Sagnol M, Ferrand C, Lac G. 2001. Anxiety, hormonal responses, and coping during a judo competition. Aggressive Behav. 27, 55–63. (10.1002/1098-2337(20010101/31)27:1<55::AID-AB5>3.0.CO;2-H) DOI
Salvador A, Costa R. 2009. Coping with competition: neuroendocrine responses and cognitive variables. Neurosci. Biobehav. Rev. 33, 160–170. (10.1016/j.neubiorev.2008.09.005) PubMed DOI
Fialová J, Havlíček J. 2012. Perception of emotion-related body odours in humans. Anthropologie 50, 95–110.
de Groot JHB, Smeets MAM. 2017. Human fear chemosignaling: evidence from a meta-analysis. Chem. Senses 42, 663–673. (10.1093/chemse/bjx049) PubMed DOI
Rantala MJ, Enksson CJP, Vainikka A, Kortet R. 2006. Male steroid hormones and female preference for male body odor. Evol. Hum. Behav. 27, 259–269. (10.1016/j.evolhumbehav.2005.11.002) DOI
Martinec Nováková L, Havlíček J, Roberts SC. 2014. Olfactory processing and odor specificity: a meta-analysis of menstrual cycle variation in olfactory sensitivity. Anthropol Rev. 77, 331–345. (10.2478/anre-2014-0024) DOI
Navarrete-Palacios E, Hudson R, Reyes-Guerrero G, Guevara-Guzman R. 2003. Lower olfactory threshold during the ovulatory phase of the menstrual cycle. Biol. Psychol. 63, 269–279. (10.1016/s0301-0511(03)00076-0) PubMed DOI
Havlíček J, Lenochová P, Oberzaucher E, Grammer K, Roberts SC. 2011. Does length of sampling affect quality of body odor samples? Chemosens. Percept. 4, 186–194. (10.1007/s12078-011-9104-6) DOI
Roberts SC, Gosling LM, Carter V, Petrie M. 2008. MHC-correlated odour preferences in humans and the use of oral contraceptives. Proc. R. Soc. B 275, 2715–2722. (10.1098/rspb.2008.0825) PubMed DOI PMC
Sedghroohi G, Ravasi A, Gaieni A, Fayazmilani R. 2011. The effect of win or loss on serum testosterone and cortisol hormones in female basketball players. World J. Sport. Sci. 5, 276–281.
Gonzalez-Bono E, Salvador A, Serrano MA, Ricarte J. 1999. Testosterone, cortisol, and mood in a sports team competition. Horm. Behav. 35, 55–62. (10.1006/hbeh.1998.1496) PubMed DOI
Schwartz EB, Granger DA. 2004. Transferrin enzyme immunoassay for quantitative monitoring of blood contamination in saliva. Clin. Chem. 50, 652–654. (10.1373/clinchem.2003.029488) PubMed DOI
Kivlighan KT, Granger DA, Schwartz EB, Nelson V, Curran M, Shirtcliff EA. 2004. Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Horm. Behav. 46, 39–46. (10.1016/j.yhbeh.2004.01.006) PubMed DOI
Kosak M et al. 2017. Can the gold standard be beaten? How reliable are various modifications of the synacthen test compared to the insulin tolerance test. Physiol. Res. 66, 387–395. (10.33549/physiolres.933729) PubMed DOI
Watson D, Clark LA, Tellegen A. 1988. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070. (10.1037/0022-3514.54.6.1063) PubMed DOI
Akutsu T, Sekiguchi K, Ohmori T, Sakurada K. 2006. Individual comparisons of the levels of (E)-3-methyl-2-hexenoic acid, an axillary odor-related compound, in Japanese. Chem. Senses 31, 557–563. (10.1093/chemse/bjj060) PubMed DOI
Fialová J, Hoffmann R, Roberts SC, Havlíček J. 2019. The effect of complete caloric intake restriction on human body odour quality. Physiol. Behav. 210, 112554 (10.1016/j.physbeh.2019.05.015) PubMed DOI
Hehman E, Xie S, Ofosu E, Nespoli G. 2018. Assessing the point at which averages are stable: a tool illustrated in the context of person perception. PsyArXiv Prepr. (10.31234/osf.io/2n6jq) DOI
Schönbrodt FD, Perugini M. 2013. At what sample size do correlations stabilize? J. Res. Pers. 47, 609–612. (10.1016/j.jrp.2013.05.009) DOI
Harris RL, Boulet M, Grogan KE, Drea CM. 2018. Costs of injury for scent signalling in a strepsirrhine primate. Sci. Rep. 8, 1–13. (10.1038/s41598-018-27322-3) PubMed DOI PMC
Drea CM. 2020. Design, delivery and perception of condition-dependent chemical signals in strepsirrhine primates: implications for human olfactory communication. Phil. Trans. R. Soc. B 375, 20190264 (10.1098/rstb.2019.0264) PubMed DOI PMC
Smallegange RC, Verhulst NO, Takken W. 2011. Sweaty skin: an invitation to bite? Trends Parasitol. 27, 143–148. (10.1016/j.pt.2010.12.009) PubMed DOI
Hurley HJ. 2001. The eccrine sweat glands: structure and function. In The biology of the skin (eds Freinkel RK, Woodley DT), pp. 47–77. New York, NY: The Parthenon Publishing Group.
Albrecht J. et al. 2011. Smelling chemosensory signals of males in anxious versus nonanxious condition increases state anxiety of female subjects. Chem. Senses 36, 19–27. (10.1093/chemse/bjq087) PubMed DOI
Mujica-Parodi LR. et al. 2009. Chemosensory cues to conspecific emotional stress activate amygdala in humans. PLoS ONE 4, e6415. (10.1371/journal.pone.0006415) PubMed DOI PMC
Zouboulis C. 2014. The human skin as a hormone target and an endocrine gland. Hormones 3, 9–26. (10.14310/horm.2002.11109) PubMed DOI
Rothardt G, Beier K. 2001. Peroxisomes in the apocrine sweat glands of the human axilla and their putative role in pheromone production. Cell. Mol. Life Sci. 58, 1344–1349. (10.1007/PL00000946) PubMed DOI PMC
Thornhill R, Chapman JF, Gangestad SW. 2013. Women's preferences for men's scents associated with testosterone and cortisol levels: patterns across the ovulatory cycle. Evol. Hum. Behav. 34, 216–221. (10.1016/j.evolhumbehav.2013.01.003) DOI
Elenkov IJ, Chrousos GP. 1999. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol. Metab. 10, 359–368. (10.1016/s1043-2760(99)00188-5) PubMed DOI
Elenkov IJ. 2004. Glucocorticoids and the Th1/Th2 balance. Ann. N.Y. Acad. Sci. 1024, 138–146. (10.1196/annals.1321.010) PubMed DOI
Folstad I, Karter AJ. 1992. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139, 603–622. (10.1086/285346) DOI
Chen D, Haviland-Jones J. 2000. Human olfactory communication of emotion. Percept. Mot. Skills. 91, 771–781. (10.2466/pms.91.7.771-781) PubMed DOI
de Groot JHB, Smeets MAM, Kaldewaij A, Duijndam MJA, Semin GR. 2012. Chemosignals communicate human emotions. Psychol. Sci. 23, 1417–1424. (10.1177/0956797612445317) PubMed DOI
Ackerl K, Atzmueller M, Grammer K. 2002. The scent of fear. Neuroendocrinol. Lett. 23, 79–84. PubMed
Human olfactory communication: current challenges and future prospects
figshare
10.6084/m9.figshare.c.4870209