EWSR1-PATZ1-rearranged sarcoma: a report of nine cases of spindle and round cell neoplasms with predilection for thoracoabdominal soft tissues and frequent expression of neural and skeletal muscle markers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
33012788
DOI
10.1038/s41379-020-00684-8
PII: S0893-3952(22)00644-5
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp MeSH
- fúze genů MeSH
- genetická predispozice k nemoci MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery analýza genetika MeSH
- nádory měkkých tkání chemie genetika patologie chirurgie MeSH
- protein EWS vázající RNA genetika MeSH
- represorové proteiny genetika MeSH
- sarkom chemie genetika patologie chirurgie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- transkripční faktory Krüppel-like genetika MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Spojené státy americké MeSH
- Názvy látek
- EWSR1 protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- PATZ1 protein, human MeSH Prohlížeč
- protein EWS vázající RNA MeSH
- represorové proteiny MeSH
- transkripční faktory Krüppel-like MeSH
The knowledge of clinical features and, particularly, histopathological spectrum of EWSR1-PATZ1-rearranged spindle and round cell sarcomas (EPS) remains limited. For this reason, we report the largest clinicopathological study of EPS to date. Nine cases were collected, consisting of four males and five females ranging in age from 10 to 81 years (average: 49 years). Five tumors occurred in abdominal wall soft tissues, three in the thorax, and one in the back of the neck. Tumor sizes ranged from 2.5 to 18 cm (average 6.6 cm). Five patients had follow-up with an average of 38 months (range: 18-60 months). Two patients had no recurrence or metastasis 19 months after diagnosis. Four patients developed multifocal pleural or pulmonary metastasis and were treated variably by surgery, radiotherapy, and chemotherapy. The latter seemed to have little to no clinical benefit. One of the four patients was free of disease 60 months after diagnosis, two patients were alive with disease at 18 and 60 months, respectively. Morphologically, low, intermediate, and high-grade sarcomas composed of a variable mixture of spindled, ovoid, epithelioid, and round cells were seen. The architectural and stromal features also varied, resulting in a broad morphologic spectrum. Immunohistochemically, the following markers were most consistently expressed: S100-protein (7/9 cases), GFAP (7/8), MyoD1 (8/9), Pax-7 (4/5), desmin (7/9), and AE1/3 (4/9). By next-generation sequencing, all cases revealed EWSR1-PATZ1 gene fusion. In addition, 3/6 cases tested harbored CDKN2A deletion, while CDKN2B deletion and TP53 mutation were detected in one case each. Our findings confirm that EPS is a clinicopathologic entity, albeit with a broad morphologic spectrum. The uneventful outcome in some of our cases indicates that a subset of EPS might follow a more indolent clinical course than previously appreciated. Additional studies are needed to validate whether any morphological and/or molecular attributes have a prognostic impact.
Central Customs Hospital Baku Azerbaijan
Department of Laboratories Seattle Children's Hospital Seattle WA USA
Department of Pathology and Molecular Genetics Bioptical Laboratory Ltd Plzen Czech Republic
Department of Pathology Faculty of Medicine Hacettepe University Ankara Turkey
Department of Pathology Faculty of Medicine in Plzen Charles University Plzen Czech Republic
Department of Pathology Oklahoma University Health Sciences Center Oklahoma City OK USA
Department of Pathology Oregon Health and Science University Portland OR USA
Department of Pathology University of Pittsburgh Pittsburgh PA USA
Zobrazit více v PubMed
Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC; 2013.
Antonescu CR, Bridge JA, Cunha IW, Dei Tos AP, Fletcher CDM, Folpe AL, et al. WHO Classification of soft tissue and bone tumors. 5th ed. Lyon: IARC; 2020.
Szuhai K, Ijszenga M, de Jong D, Karseladze A, Tanke HJ, Hogendoorn PC. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res. 2009;15:2259–68. PubMed
Wang GY, Thomas DG, Davis JL, Ng T, Patel RM, Harms PW, et al. EWSR1-NFATC2 translocation-associated sarcoma clinicopathologic findings in a rare aggressive primary bone or soft tissue tumor. Am J Surg Pathol. 2019;43:1112–22. PubMed
Bode-Lesniewska B, Fritz C, Exner GU, Wagner U, Fuchs B. EWSR1-NFATC2 and FUS-NFATC2 gene fusion-associated mesenchymal tumors: clinicopathologic correlation and literature review. Sarcoma. 2019;2019:9386390. PubMed PMC
Kinkor Z, Vanecek T, Svajdler M Jr., Mukensnabl P, Vesely K, Baxa J, et al. [Where does Ewing sarcoma end and begin—two cases of unusual bone tumors with t(20;22)(EWSR1-NFATc2) alteration]. Cesk Patol. 2014;50:87–91. PubMed
Siegfried A, Rousseau A, Maurage CA, Pericart S, Nicaise Y, Escudie F, et al. EWSR1-PATZ1 gene fusion may define a new glioneuronal tumor entity. Brain Pathol. 2019;29:53–62. PubMed
Bridge JA, Sumegi J, Druta M, Bui MM, Henderson-Jackson E, Linos K, et al. Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod Pathol. 2019;32:1593–604. PubMed
Michal M, Berry RS, Rubin BP, Kilpatrick SE, Agaimy A, Kazakov DV, et al. EWSR1-SMAD3-rearranged fibroblastic tumor: an emerging entity in an increasingly more complex group of fibroblastic/myofibroblastic neoplasms. Am J Surg Pathol. 2018;42:1325–33. PubMed
Michal M, Agaimy A, Contreras AL, Svajdler M, Kazakov DV, Steiner P, et al. Dysplastic lipoma: a distinctive atypical lipomatous neoplasm with anisocytosis, focal nuclear atypia, p53 overexpression, and a lack of MDM2 gene amplification by FISH; a report of 66 cases demonstrating occasional multifocality and a rare association with retinoblastoma. Am J Surg Pathol. 2018;42:1530–40. PubMed
Steiner P, Andreasen S, Grossmann P, Hauer L, Vanecek T, Miesbauerova M, et al. Prognostic significance of 1p36 locus deletion in adenoid cystic carcinoma of the salivary glands. Virchows Arch. 2018;473:471–80. PubMed
Mohapatra G, Betensky RA, Miller ER, Carey B, Carey B, et al. Glioma test array for use with formalin-fixed, paraffin-embedded tissue: array comparative genomic hybridization correlates with loss of heterozygosity and fluorescence in situ hybridization. J Mol Diagn. 2006;8:268–76. PubMed PMC
Gerami P, Li G, Pouryazdanparast P, Blondin B, Beilfuss B, Slenk C, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012;36:808–17. PubMed
Svajdler M, Michal M, Martinek P, Ptakova N, Kinkor Z, Szepe P, et al. Fibro-osseous pseudotumor of digits and myositis ossificans show consistent COL1A1-USP6 rearrangement: a clinicopathological and genetic study of 27 cases. Hum Pathol. 2019;88:39–47. PubMed
Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31. PubMed PMC
Agaimy A, Tögel L, Haller F, Zenk J, Hornung J, Märkl B. YAP1-NUTM1 Gene Fusion in Porocarcinoma of the External Auditory Canal. Head and Neck Pathol. 2020. https://doi.org/10.1007/s12105-020-01173-9 .
Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018;7:746–56. PubMed PMC
Mastrangelo T, Modena P, Tornielli S, Bullrich F, Testi MA, Mezzelani A, et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene. 2000;19:3799–804. PubMed
Chougule A, Taylor MS, Nardi V, Chebib I, Cote GM, Choy E, et al. Spindle and round cell sarcoma with EWSR1-PATZ1 gene fusion: a sarcoma with polyphenotypic differentiation. Am J Surg Pathol. 2019;43:220–8. PubMed PMC
Watson S, Perrin V, Guillemot D, Reynaud S, Coindre JM, Karanian M, et al. Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol. 2018;245:29–40. PubMed
Park KW, Cai Y, Benjamin T, Qorbani A, George J. Round cell sarcoma with EWSR1-PATZ1 gene fusion in the neck: case report and review of the literature. Laryngoscope. 2020. https://doi.org/10.1002/lary.28554 .
Tsuda Y, Zhang L, Meyers P, Tap WD, Healey JH, Antonescu CR. The clinical heterogeneity of round cell sarcomas with EWSR1/FUS gene fusions. impact of gene fusion type on clinical features and outcome. Genes Chromosomes Cancer. 2020;59:525–34. PubMed
Antonescu C. Round cell sarcomas beyond Ewing: emerging entities. Histopathology. 2014;64:26–37. PubMed
Alvarez-Breckenridge C, Miller JJ, Nayyar N, Gill CM, Kaneb A, D’Andrea M, et al. Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor. NPJ Precis Oncol. 2017;1:5. PubMed PMC
Johnson A, Severson E, Gay L, Vergilio JA, Elvin J, Suh J, et al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist. 2017;22:1478–90. PubMed PMC
Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD, et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 2016;131:833–45. PubMed PMC
Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron. 2000;25:331–43. PubMed
Kaleta M, Wakulińska A, Karkucińska-Więckowska A, Dembowska-Bagińska B, Grajkowska W, Pronicki M, et al. OLIG2 is a novel immunohistochemical marker associated with the presence of PAX3/7-FOXO1 translocation in rhabdomyosarcomas. Diagnostic Pathol. 2019;14:103.
Raghavan SS, Mooney KL, Folpe AL, Charville GW. OLIG2 is a marker of the fusion protein-driven neurodevelopmental transcriptional signature in alveolar rhabdomyosarcoma. Hum Pathol. 2019;91:77–85. PubMed
Chen J, Jiang Q, Zhang Y, Yu Y, Zheng Y, Chen J, et al. Clinical features and long-term outcome of primary intracranial Ewing sarcoma/peripheral primitive neuroectodermal tumors: 14 cases from a single institution. World Neurosurg. 2019;122:e1606–e1614. PubMed
Bielle F, Zanello M, Guillemot D, Gil-Delgado M, Bertrand A, Boch AL, et al. Unusual primary cerebral localization of a CIC-DUX4 translocation tumor of the Ewing sarcoma family. Acta Neuropathol. 2014;128:309–11. PubMed
Ito M, Ishikawa M, Kitajima M, Narita J, Hattori S, Endo O, et al. A case report of CIC-rearranged undifferentiated small round cell sarcoma in the cerebrum. Diagn Cytopathol. 2016;44:828–32. PubMed
Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell. 2016;164:1060–72. PubMed PMC
Lee JC, Villanueva-Meyer JE, Ferris SP, Cham EM, Zucker J, Cooney T, et al. Clinicopathologic and molecular features of intracranial desmoplastic small round cell tumors. Brain Pathol. 2020;30:213–25. PubMed
Folpe AL, Goldblum JR, Rubin BP, Shehata BM, Liu W, Dei Tos AP, et al. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29:1025–33. PubMed
Charville GW, Wang WL, Ingram DR, Roy A, Thomas D, Patel RM, et al. EWSR1 fusion proteins mediate PAX7 expression in Ewing sarcoma. Mod Pathol. 2017;30:1312–20. PubMed
Yamada Y, Kuda M, Kohashi K, Yamamoto H, Takemoto J, Ishii T, et al. Histological and immunohistochemical characteristics of undifferentiated small round cell sarcomas associated with CIC-DUX4 and BCOR-CCNB3 fusion genes. Virchows Arch. 2017;470:373–80. PubMed
Antonescu CR, Owosho AA, Zhang L, Chen S, Deniz K, Huryn JM, et al. Sarcomas With CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol. 2017;41:941–9. PubMed PMC
Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol. 2012;20:445–50. PubMed
Thway K, Noujaim J, Zaidi S, Miah AB, Benson C, Messiou C, et al. Desmoplastic small round cell tumor: pathology, genetics, and potential therapeutic strategies. Int J Surg Pathol. 2016;24:672–84. PubMed
Ordonez NG. Desmoplastic small round cell tumor: II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol. 1998;22:1314–27. PubMed
Mohamed M, Gonzalez D, Fritchie KJ, Swansbury J, Wren D, Benson C, et al. Desmoplastic small round cell tumor: evaluation of reverse transcription-polymerase chain reaction and fluorescence in situ hybridization as ancillary molecular diagnostic techniques. Virchows Arch. 2017;471:631–40. PubMed
Kawahara E, Oda Y, Ooi A, Katsuda S, Nakanishi I, Umeda S. Expression of glial fibrillary acidic protein (GFAP) in peripheral nerve sheath tumors. A comparative study of immunoreactivity of GFAP, vimentin, S-100 protein, and neurofilament in 38 schwannomas and 18 neurofibromas. Am J Surg Pathol. 1988;12:115–20. PubMed
Gray MH, Rosenberg AE, Dickersin GR, Bhan AK. Glial fibrillary acidic protein and keratin expression by benign and malignant nerve sheath tumors. Hum Pathol. 1989;20:1089–96. PubMed
Benini S, Gamberi G, Cocchi S, Righi A, Frisoni T, Longhi A, et al. Identification of a novel fusion transcript EWSR1-VEZF1 by anchored multiplex PCR in malignant peripheral nerve sheath tumor. Pathol Res Pract. 2020;216:152760. PubMed
Xiong JW, Leahy A, Lee HH, Stuhlmann H. Vezf1: a Zn finger transcription factor restricted to endothelial cells and their precursors. Dev Biol. 1999;206:123–41. PubMed
Genecards—the human gene database (database online). VEZF1 gene. 2020 https://www.genecards.org/cgi-bin/carddisp.pl?gene=VEZF1 .