Aphid colony duration does not limit the abundance of Harmonia axyridis in the mediterranean area
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33273581
PubMed Central
PMC7713073
DOI
10.1038/s41598-020-78257-7
PII: 10.1038/s41598-020-78257-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- biomasa * MeSH
- brouci fyziologie MeSH
- dieta MeSH
- fylogeografie MeSH
- mšice fyziologie MeSH
- predátorské chování MeSH
- rozšíření zvířat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There is a lot of information on the factors limiting the distributions of species in their native areas, but much less on those limiting potential changes in distributions of species that are currently spreading outside their present range, especially invasive species. However, this information is often quite essential, as it enables the prediction of future spatial distributions and local abundances of invasive species and the potential effect they may have on people and crops. Arising from glasshouse escapes in North America and the Netherlands, the invasive ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), originally from the east Palearctic, has now spread across the whole of North America and most of Europe, both of which caused serious concern. Recent observations show that the spread of H. axyridis towards the equator is limited. For example, it is quite rare in the Mediterranean area and its northward spread in South America is also quite slow, as if there was something limiting its spread towards the equator. European literature indicates it is neither climate, nor the distance of the Mediterranean from the original release location in the Netherlands. Therefore, we hypothesized that it may be biotic factors. In particular, the duration of colonies of prey (colony is the set of individuals in one patch, usually on one plant) that becomes shorter as one approaches the equator. This may lower the fitness of the predator and subsequently lead to low population densities. We test here, whether the duration of aphid colonies is shorter in the Mediterranean area than in Central Europe. Unfortunately, our data does not support this hypothesis. Therefore, the question of what limits the distribution of H. axyridis towards the equator remains to be resolved.
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
School of Biological Sciences University of East Anglia Norwich UK
Zobrazit více v PubMed
Gaston KJ. The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press; 2003.
Samways MJ, Osborn R, Hastings H, Hattingh V. Global climate change and accuracy of prediction of species’ geographical ranges: establishment success pf introduced ladybirds (Coccinellidae, Chilocorus spp.) worldwide. J. Biogeogr. 1999;26:795–812. doi: 10.1111/j.1365-2699.1999.00318.x. DOI
Poutsma J, Loomans AJM, Aukema B, Heijerman T. Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. Biocontrol. 2008;53:103–125. doi: 10.1007/s10526-007-9140-y. DOI
Bidinger K, Lötters S, Röder D, Veth M. Species distribution models for the alien invasive Asian Harlequin ladybird (Harmonia axyridis) J. Appl. Entomol. 2012;36:109–123. doi: 10.1111/j.1439-0418.2010.01598.x. DOI
Koch RL, Venette RC, Hutchinson WD. Invasions by Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in the Western Hemisphere: Implications for South America. Neotrop. Entomol. 2006;35:421–434. doi: 10.1590/S1519-566X2006000400001. PubMed DOI
Ehrenfeld JG. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. S. 2010;41:59–80. doi: 10.1146/annurev-ecolsys-102209-144650. DOI
Van der Putten WH, Macel M, Visser ME. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. T. R. Soc. B. 2010;365:2025–2034. doi: 10.1098/rstb.2010.0037. PubMed DOI PMC
Kindlmann P, Růžička Z. Possible consequences of a specific interaction between predators and parasites of aphids. Ecol. Model. 1992;61:253–265. doi: 10.1016/0304-3800(92)90021-6. DOI
Dixon AFG, Hemptinne JL, Kindlmann P. Effectiveness of ladybirds as biological control agents: Patterns and processes. Entomophaga. 1997;42:71–83. doi: 10.1007/BF02769882. DOI
Plantegenest M, Pierre JS, Dedryver CA, Kindlmann P. Assessment of the relative impact of different natural enemies on population dynamics of the grain aphid Sitobion avenae in the field. Ecol. Entomol. 2001;26:404–410. doi: 10.1046/j.1365-2311.2001.00330.x. DOI
Kindlmann P, Dixon AFG. When and why top–down regulation fails in arthropod predator–prey systems. Basic Appl. Ecol. 2001;2:333–340. doi: 10.1078/1439-1791-00071. DOI
Honěk A, Martinková Z, Kindlmann P, Ameixa OMCC, Dixon AFG. Long–term trends in the composition of aphidophagous coccinellid communities in Central Europe. Insect Conser. Diver. 2014;7:55–63. doi: 10.1111/icad.12032. DOI
Kindlmann P, Yasuda H, Kajita Y, Sato S, Dixon AFG. Predator efficiency reconsidered for a ladybird–aphid system. Front. Ecol. Evol. 2015;3:27. doi: 10.3389/fevo.2015.00027. DOI
Soares AO, Honěk A, Martinková Z, Brown PMJ, Borges I. Can native geographical range, dispersal ability and development rates predict the successful establishment of alien ladybird (Coleoptera: Coccinellidae) species in Europe? Front. Ecol. Evol. 2018;6:57. doi: 10.3389/fevo.2018.00057. DOI
Roy HE, et al. The harlequin ladybird, Harmonia axyridis: Global perspectives on invasion history and ecology. Biol. Invasions. 2016;18:997–1044. doi: 10.1007/s10530-016-1077-6. DOI
Kuznetsov VN. The use of far–eastern lady beetles (Coleoptera, Coccinellidae) in biological control of plant pest. Inform. Bull. East Palearctic Sect. IOBC. 1987;21:37–43.
Yasuda H, Evans EW, Kajita Y, Urakawa K, Takizawa T. Asymmetric larval interactions between introduced and indigenous ladybirds in North America. Oecologia. 2004;141:722–731. doi: 10.1007/s00442-004-1680-6. PubMed DOI
Soares AO, et al. Harmonia axyridis failed to establish in the Azores: The role of species richness, intraguild interactions and resource availability. Biocontrol. 2017;62:423–434. doi: 10.1007/s10526-017-9794-z. DOI
Grez AA, Zaviezo T, Roy HE, Brown PMJ, Bizama G. Rapid spread of Harmonia axyridis in Chile and its effects on local coccinellid biodiversity. Divers Distrib. 2016;22:982–994. doi: 10.1111/ddi.12455. DOI
Wallace AR. The Geographical Distribution of Animals. London: Macmillan; 1876.
Dixon AFG, Kindlmann P, Lepš J, Holman J. Why there are so few species of aphids, especially in the tropics. Am. Nat. 1987;129:580–592. doi: 10.1086/284659. DOI
Kindlmann P, Dixon AFG. Optimum body size: Effects of food quality and temperature, when reproductive growth rate is restricted, with examples from aphids. J. Evolut. Biol. 1992;5:677–690. doi: 10.1046/j.1420-9101.1992.5040677.x. DOI
Kindlmann P, Dixon AFG. Optimal foraging in ladybird beetles (Coleoptera, Coccinellidae) and its consequences for their use in biological–control. Eur. J. Entomol. 1993;90:443–450.
Dostálková I, Kindlmann P. Evolutionary stable strategies for stochastic processes. Theor. Popul. Biol. 2004;65:205–210. doi: 10.1016/j.tpb.2004.01.001. PubMed DOI
Houdková K, Kindlmann P. Scaling up population dynamic processes in a ladybird–aphid system. Popul. Ecol. 2006;48:323–332. doi: 10.1007/s10144-006-0007-3. DOI
Yasuda H, Ohnuma N. Effect of cannibalism and predation on the larval performance of two ladybird beetles. Entomol. Exp. Appl. 1999;93:63–67. doi: 10.1046/j.1570-7458.1999.00562.x. DOI
Dixon AFG. Factors limiting the effectiveness of the coccinellid beetle, Adalia bipunctata (L.), as a predator of the sycamore aphid, Drepanosipum platanoides (Schr.) J. Anim. Ecol. 1970;39:739–751. doi: 10.2307/2864. DOI
Kindlmann P, Arditi R, Dixon AFG. A simple aphid population model. In: Simon JC, Dedryver CA, Rispe C, Hulle M, editors. Aphids in a New Millennium. Paris: INRA; 2004. pp. 325–330.
Dawkins, P. Section 2–9: Euler’s Method. http://tutorial.math.lamar.edu/Classes/DE/EulersMethod.aspx (2003).