Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33277437
PubMed Central
PMC7768758
DOI
10.1073/pnas.2018123117
PII: 2018123117
Knihovny.cz E-zdroje
- Klíčová slova
- genomic sequencing, methylation, repeatome, speciation models, subterranean rodents,
- MeSH
- biologická adaptace MeSH
- biologická evoluce * MeSH
- epigeneze genetická MeSH
- genetická variace MeSH
- genom MeSH
- jednonukleotidový polymorfismus MeSH
- molekulární evoluce MeSH
- populační genetika MeSH
- reprodukční izolace MeSH
- Spalax genetika fyziologie MeSH
- sympatrie * MeSH
- tok genů MeSH
- variabilita počtu kopií segmentů DNA MeSH
- vazebná nerovnováha MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Izrael MeSH
Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.
Department of Gastroenterology The 305 Hospital of PLA 100017 Beijing China
Faculty of Science University of South Bohemia 370 05 České Budejovice Czech Republic
Institute of Evolution University of Haifa 3498838 Haifa Israel
Institute of Evolution University of Haifa 3498838 Haifa Israel;
Leibniz Institute for Zoo and Wildlife Research 10315 Berlin Germany
Sagol Department of Neurobiology University of Haifa Haifa 3498838 Israel
School of Public Health Lanzhou University Lanzhou 730000 China
Zobrazit více v PubMed
Nevo E., Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence (Oxford University Press, 1999).
Wahrman J., Goitein R., Nevo E., Mole rat Spalax: Evolutionary significance of chromosome variation. Science 164, 82–84 (1969). PubMed
Wahrman J., Goitein R., Nevo E., “Geographic variation of chromosome forms in Spalax, a subterranean mammal of restricted mobility” in Comparative Mammalian Cytogenetics, K. Benirschke, Ed. (Springer, New York, 1969), pp. 30–48.
Bitan A., Rubin S., Climatic Atlas of Israel for Physical and Environmental Planning and Design (Israel Ministry of Transport, 1991).
Nevo E., Speciation: Chromosomal Mechanisms (In: eLS, John Wiley & Sons Ltd, Chichester, 2012).
Nevo E., “Modes of speciation: The nature and role of peripheral isolates in the origin of species” in Genetics, Speciation and the Founder Principle, L. V. Giddings, K. Y. Kaneshiro, W. W. Anderson, Eds. (Oxford University Press, Oxford, 1989), pp. 205–236.
Hadid Y., et al. , Possible incipient sympatric ecological speciation in blind mole rats (Spalax). Proc. Natl. Acad. Sci. U.S.A. 110, 2587–2592 (2013). PubMed PMC
Li K., et al. , Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc. Natl. Acad. Sci. U.S.A. 112, 11905–11910 (2015). PubMed PMC
Li K., et al. , Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax. Proc. Natl. Acad. Sci. U.S.A. 113, 7584–7589 (2016). PubMed PMC
Nevo E., Ivanitskaya E., Beiles A., Adaptive Radiation of Blind Subterranean Mole Rats: naming and Revisiting the Four Sibling Species of the Spalax Ehrenbergi Superspecies in Israel: Spalax galili (2n= 52), S. Golani (2n= 54), S. Carmeli (2n= 58), and S. judaei (2n= 60) (Backhuys Publishers, 2001).
Nevo E., Speciation in action and adaptation in subterranean mole rats: Patterns and theory. Ital. J. Zool. (Modena) 52, 65–95 (1985).
Nevo E., Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Evol. Biol. 25, 1–125 (1991).
Nevo E., Bar-El H., Hybridization and speciation in fossorial mole rats. Evolution 30, 831–840 (1976). PubMed
Lövy M., et al. , Habitat and burrow system characteristics of the blind mole rat Spalax galili in an area of supposed sympatric speciation. PLoS One 10, e0133157 (2015). PubMed PMC
Lövy M., Šklíba J., Šumbera R., Nevo E., Soil preference in blind mole rats in an area of supposed sympatric speciation: Do they choose the fertile or the familiar? J. Zool. (Lond.) 303, 291–300 (2017).
Wahrman J., Richler C., Gamperl R., Nevo E., Revisiting Spalax: Mitotic and meiotic chromosome variability. Isr. J. Zool. 33, 15–38 (1984).
Nevo E., Bodmer M., Heth G., Olfactory discrimination as an isolating mechanism in speciating mole rats. Experientia 32, 1511–1512 (1976). PubMed
Heth G., Nevo E., Origin and evolution of ethological isolation in subterranean mole rats. Evolution 35, 259–274 (1981). PubMed
Heth G., Frankenberg E., Nevo E., “Courtship” call of subterranean mole rats (Spalax ehrenbergi): Physical analysis. J. Mammal. 69, 121–125 (1988).
Nevo E., Heth G., Pratt H., Seismic communication in a blind subterranean mammal: a major somatosensory mechanism in adaptive evolution underground. Proc. Natl. Acad. Sci. U.S.A. 88, 1256–1260 (1991). PubMed PMC
Nevo E., Filippucci M. G., Beiles A., Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the near east revisited: Patterns and theory. Heredity 72, 465–487 (1994). PubMed
Li H., Durbin R., Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011). PubMed PMC
Bar-Matthews M., Ayalon A., Kaufman A., Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chem. Geol. 169, 145–156 (2000).
Almogi-Labin A., et al. , Climatic variability during the last ∼90 ka of the southern and northern Levantine basin as evident from marine records and speleothems. Quat. Sci. Rev. 28, 2882–2896 (2009).
Deuser W. G., Ross E. H., Waterman L. S., Glacial and pluvial periods: Their relationship revealed by Pleistocene sediments of the Red Sea and Gulf of Aden. Science 191, 1168–1170 (1976). PubMed
Ivanitskaya E., Rashkovetsky L., Nevo E., Chromosomes in a hybrid zone of Israeli mole rats (Spalax, Rodentia). Russ. J. Genet. 46, 1149–1151 (2010). PubMed
Nevo E., Kishi K., Beiles A., Genetic polymorphism of urine deoxyribonuclease I isomerases of subterranean mole rats, Spalax ehrenbergi superspecies, in Israel: Ecogeographical patterns and correlates. Biochem. Genet. 28, 561–570 (1990). PubMed
Durand E. Y., Patterson N., Reich D., Slatkin M., Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011). PubMed PMC
Steinig E. J., Neuditschko M., Khatkar M. S., Raadsma H. W., Zenger K. R., Netview p: A network visualization tool to unravel complex population structure using genome-wide SNPs. Mol. Ecol. Resour. 16, 216–227 (2016). PubMed
Pickrell J. K., Pritchard J. K., Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012). PubMed PMC
Patterson N., et al. , Ancient admixture in human history. Genetics 192, 1065–1093 (2012). PubMed PMC
Bozdogan H., Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).
Tchernov E., Succession of Rodent Faunas during the Upper Pleistocene of Israel. (Paul Parey, 1968).
Gorbunova V., et al. , Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl. Acad. Sci. U.S.A. 109, 19392–19396 (2012). PubMed PMC
Manov I., et al. , Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: In vivo and in vitro evidence. BMC Biol. 11, 91 (2013). PubMed PMC
Uehara T., Kage-Nakadai E., Yoshina S., Imae R., Mitani S., The tumor suppressor BCL7B functions in the Wnt signaling pathway. PLoS Genet. 11, e1004921 (2015). PubMed PMC
Rutnam Z. J., Du W. W., Yang W., Yang X., Yang B. B., The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat. Commun. 5, 2914 (2014). PubMed PMC
Nevo E., Heth G., Beiles A., Aggression patterns in adaptation and speciation of subterranean mole rats. J. Genet. 65, 65–78 (1986).
Danial‐Farran N., et al. , Adaptive evolution of coagulation and blood properties in hypoxia tolerant Spalax in Israel. J. Zool. (Lond.) 303, 226–235 (2017).
Šklíba J., et al. , Activity of free-living subterranean blind mole rats Spalax galili (Rodentia: Spalacidae) in an area of supposed sympatric speciation. Biol. J. Linn. Soc. Lond. 118, 280–291 (2016).
Sun L., et al. , Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones 20, 939–950 (2015). PubMed PMC
O’Bryan M. K., et al. , Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev. Biol. 316, 359–370 (2008). PubMed PMC
Zhao J., et al. , Deletion of Spata2 by CRISPR/Cas9n causes increased inhibin alpha expression and attenuated fertility in male mice. Biol. Reprod. 97, 497–513 (2017). PubMed
Han F., et al. , Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin’s finches. Genome Res. 27, 1004–1015 (2017). PubMed PMC
Ma T., et al. , Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proc. Natl. Acad. Sci. U.S.A. 115, E236–E243 (2018). PubMed PMC
Pezer Ž., Harr B., Teschke M., Babiker H., Tautz D., Divergence patterns of genic copy number variation in natural populations of the house mouse (Mus musculus domesticus) reveal three conserved genes with major population-specific expansions. Genome Res. 25, 1114–1124 (2015). PubMed PMC
Couch L., Duszynski D. W., Nevo E., Coccidia (Apicomplexa), genetic diversity, and environmental unpredictability of four chromosomal species of the subterranean superspecies Spalax ehrenbergi (mole-rat) in Israel. J. Parasitol. 79, 181–189 (1993). PubMed
Nevo E., Shkolnik A., Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30, 724–726 (1974). PubMed
Abyzov A., Urban A. E., Snyder M., Gerstein M., CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011). PubMed PMC
Nevo E., Pirlot P., Beiles A., Brain size diversity in adaptation and speciation of subterranean mole rats. J. Zool. Syst. Evol. Res. 26, 467–479 (1988).
Nevo E., Klein J., Structure and evolution of Mhc in subterranean mammals of the superspecies Spalax ehrenbergi in Israel. Prog. Clin. Biol. Res. 335, 397–411 (1990). PubMed
Yahav S., Simson S., Nevo E., The effect of protein and salt loading on urinary concentrating ability in four chromosomal species of Spalax ehrenbergi. J. Zool. (Lond.) 222, 341–347 (1990).
Carducci F., Biscotti M., Barucca M., Canapa A., Transposable elements in vertebrates: Species evolution and environmental adaptation. Eur. Zool. J. 86, 497–503 (2019).
Wagstaff B. J., Barnerssoi M., Roy-Engel A. M., Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS One 6, e19672 (2011). PubMed PMC
Weyrich A., et al. , Whole genome sequencing and methylome analysis of the wild Guinea pig. BMC Genomics 15, 1036 (2014). PubMed PMC
Grandjean V., Yaman R., Cuzin F., Rassoulzadegan M., Inheritance of an epigenetic mark: The CpG DNA methyltransferase 1 is required for de novo establishment of a complex pattern of non-CpG methylation. PLoS One 2, e1136 (2007). PubMed PMC
Catzeflis F. M., Nevo E., Ahlquist J. E., Sibley C. G., Relationships of the chromosomal species in the Eurasian mole rats of the Spalax ehrenbergi group as determined by DNA-DNA hybridization, and an estimate of the spalacid-murid divergence time. J. Mol. Evol. 29, 223–232 (1989). PubMed
Via S., Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 451–460 (2012). PubMed PMC
Hendry A. P., Evolutionary biology: Speciation. Nature 458, 162–164 (2009). PubMed
Nevo E., Evolution in action: Adaptation and incipient sympatric speciation with gene flow across life at “Evolution Canyon”, Israel. Isr. J. Ecol. Evol. 60, 85–98 (2014).
Nevo E., Selection overrules gene flow at “Evolution Canyons”, Israel. Adv. Genet. Res. 5, 67–89 (2011).