Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation

. 2020 Dec 22 ; 117 (51) : 32499-32508. [epub] 20201204

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33277437

Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.

Zobrazit více v PubMed

Nevo E., Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence (Oxford University Press, 1999).

Wahrman J., Goitein R., Nevo E., Mole rat Spalax: Evolutionary significance of chromosome variation. Science 164, 82–84 (1969). PubMed

Wahrman J., Goitein R., Nevo E., “Geographic variation of chromosome forms in Spalax, a subterranean mammal of restricted mobility” in Comparative Mammalian Cytogenetics, K. Benirschke, Ed. (Springer, New York, 1969), pp. 30–48.

Bitan A., Rubin S., Climatic Atlas of Israel for Physical and Environmental Planning and Design (Israel Ministry of Transport, 1991).

Nevo E., Speciation: Chromosomal Mechanisms (In: eLS, John Wiley & Sons Ltd, Chichester, 2012).

Nevo E., “Modes of speciation: The nature and role of peripheral isolates in the origin of species” in Genetics, Speciation and the Founder Principle, L. V. Giddings, K. Y. Kaneshiro, W. W. Anderson, Eds. (Oxford University Press, Oxford, 1989), pp. 205–236.

Hadid Y., et al. , Possible incipient sympatric ecological speciation in blind mole rats (Spalax). Proc. Natl. Acad. Sci. U.S.A. 110, 2587–2592 (2013). PubMed PMC

Li K., et al. , Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc. Natl. Acad. Sci. U.S.A. 112, 11905–11910 (2015). PubMed PMC

Li K., et al. , Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax. Proc. Natl. Acad. Sci. U.S.A. 113, 7584–7589 (2016). PubMed PMC

Nevo E., Ivanitskaya E., Beiles A., Adaptive Radiation of Blind Subterranean Mole Rats: naming and Revisiting the Four Sibling Species of the Spalax Ehrenbergi Superspecies in Israel: Spalax galili (2n= 52), S. Golani (2n= 54), S. Carmeli (2n= 58), and S. judaei (2n= 60) (Backhuys Publishers, 2001).

Nevo E., Speciation in action and adaptation in subterranean mole rats: Patterns and theory. Ital. J. Zool. (Modena) 52, 65–95 (1985).

Nevo E., Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Evol. Biol. 25, 1–125 (1991).

Nevo E., Bar-El H., Hybridization and speciation in fossorial mole rats. Evolution 30, 831–840 (1976). PubMed

Lövy M., et al. , Habitat and burrow system characteristics of the blind mole rat Spalax galili in an area of supposed sympatric speciation. PLoS One 10, e0133157 (2015). PubMed PMC

Lövy M., Šklíba J., Šumbera R., Nevo E., Soil preference in blind mole rats in an area of supposed sympatric speciation: Do they choose the fertile or the familiar? J. Zool. (Lond.) 303, 291–300 (2017).

Wahrman J., Richler C., Gamperl R., Nevo E., Revisiting Spalax: Mitotic and meiotic chromosome variability. Isr. J. Zool. 33, 15–38 (1984).

Nevo E., Bodmer M., Heth G., Olfactory discrimination as an isolating mechanism in speciating mole rats. Experientia 32, 1511–1512 (1976). PubMed

Heth G., Nevo E., Origin and evolution of ethological isolation in subterranean mole rats. Evolution 35, 259–274 (1981). PubMed

Heth G., Frankenberg E., Nevo E., “Courtship” call of subterranean mole rats (Spalax ehrenbergi): Physical analysis. J. Mammal. 69, 121–125 (1988).

Nevo E., Heth G., Pratt H., Seismic communication in a blind subterranean mammal: a major somatosensory mechanism in adaptive evolution underground. Proc. Natl. Acad. Sci. U.S.A. 88, 1256–1260 (1991). PubMed PMC

Nevo E., Filippucci M. G., Beiles A., Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the near east revisited: Patterns and theory. Heredity 72, 465–487 (1994). PubMed

Li H., Durbin R., Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011). PubMed PMC

Bar-Matthews M., Ayalon A., Kaufman A., Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chem. Geol. 169, 145–156 (2000).

Almogi-Labin A., et al. , Climatic variability during the last ∼90 ka of the southern and northern Levantine basin as evident from marine records and speleothems. Quat. Sci. Rev. 28, 2882–2896 (2009).

Deuser W. G., Ross E. H., Waterman L. S., Glacial and pluvial periods: Their relationship revealed by Pleistocene sediments of the Red Sea and Gulf of Aden. Science 191, 1168–1170 (1976). PubMed

Ivanitskaya E., Rashkovetsky L., Nevo E., Chromosomes in a hybrid zone of Israeli mole rats (Spalax, Rodentia). Russ. J. Genet. 46, 1149–1151 (2010). PubMed

Nevo E., Kishi K., Beiles A., Genetic polymorphism of urine deoxyribonuclease I isomerases of subterranean mole rats, Spalax ehrenbergi superspecies, in Israel: Ecogeographical patterns and correlates. Biochem. Genet. 28, 561–570 (1990). PubMed

Durand E. Y., Patterson N., Reich D., Slatkin M., Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011). PubMed PMC

Steinig E. J., Neuditschko M., Khatkar M. S., Raadsma H. W., Zenger K. R., Netview p: A network visualization tool to unravel complex population structure using genome-wide SNPs. Mol. Ecol. Resour. 16, 216–227 (2016). PubMed

Pickrell J. K., Pritchard J. K., Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012). PubMed PMC

Patterson N., et al. , Ancient admixture in human history. Genetics 192, 1065–1093 (2012). PubMed PMC

Bozdogan H., Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).

Tchernov E., Succession of Rodent Faunas during the Upper Pleistocene of Israel. (Paul Parey, 1968).

Gorbunova V., et al. , Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl. Acad. Sci. U.S.A. 109, 19392–19396 (2012). PubMed PMC

Manov I., et al. , Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: In vivo and in vitro evidence. BMC Biol. 11, 91 (2013). PubMed PMC

Uehara T., Kage-Nakadai E., Yoshina S., Imae R., Mitani S., The tumor suppressor BCL7B functions in the Wnt signaling pathway. PLoS Genet. 11, e1004921 (2015). PubMed PMC

Rutnam Z. J., Du W. W., Yang W., Yang X., Yang B. B., The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat. Commun. 5, 2914 (2014). PubMed PMC

Nevo E., Heth G., Beiles A., Aggression patterns in adaptation and speciation of subterranean mole rats. J. Genet. 65, 65–78 (1986).

Danial‐Farran N., et al. , Adaptive evolution of coagulation and blood properties in hypoxia tolerant Spalax in Israel. J. Zool. (Lond.) 303, 226–235 (2017).

Šklíba J., et al. , Activity of free-living subterranean blind mole rats Spalax galili (Rodentia: Spalacidae) in an area of supposed sympatric speciation. Biol. J. Linn. Soc. Lond. 118, 280–291 (2016).

Sun L., et al. , Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones 20, 939–950 (2015). PubMed PMC

O’Bryan M. K., et al. , Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev. Biol. 316, 359–370 (2008). PubMed PMC

Zhao J., et al. , Deletion of Spata2 by CRISPR/Cas9n causes increased inhibin alpha expression and attenuated fertility in male mice. Biol. Reprod. 97, 497–513 (2017). PubMed

Han F., et al. , Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin’s finches. Genome Res. 27, 1004–1015 (2017). PubMed PMC

Ma T., et al. , Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proc. Natl. Acad. Sci. U.S.A. 115, E236–E243 (2018). PubMed PMC

Pezer Ž., Harr B., Teschke M., Babiker H., Tautz D., Divergence patterns of genic copy number variation in natural populations of the house mouse (Mus musculus domesticus) reveal three conserved genes with major population-specific expansions. Genome Res. 25, 1114–1124 (2015). PubMed PMC

Couch L., Duszynski D. W., Nevo E., Coccidia (Apicomplexa), genetic diversity, and environmental unpredictability of four chromosomal species of the subterranean superspecies Spalax ehrenbergi (mole-rat) in Israel. J. Parasitol. 79, 181–189 (1993). PubMed

Nevo E., Shkolnik A., Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30, 724–726 (1974). PubMed

Abyzov A., Urban A. E., Snyder M., Gerstein M., CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011). PubMed PMC

Nevo E., Pirlot P., Beiles A., Brain size diversity in adaptation and speciation of subterranean mole rats. J. Zool. Syst. Evol. Res. 26, 467–479 (1988).

Nevo E., Klein J., Structure and evolution of Mhc in subterranean mammals of the superspecies Spalax ehrenbergi in Israel. Prog. Clin. Biol. Res. 335, 397–411 (1990). PubMed

Yahav S., Simson S., Nevo E., The effect of protein and salt loading on urinary concentrating ability in four chromosomal species of Spalax ehrenbergi. J. Zool. (Lond.) 222, 341–347 (1990).

Carducci F., Biscotti M., Barucca M., Canapa A., Transposable elements in vertebrates: Species evolution and environmental adaptation. Eur. Zool. J. 86, 497–503 (2019).

Wagstaff B. J., Barnerssoi M., Roy-Engel A. M., Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS One 6, e19672 (2011). PubMed PMC

Weyrich A., et al. , Whole genome sequencing and methylome analysis of the wild Guinea pig. BMC Genomics 15, 1036 (2014). PubMed PMC

Grandjean V., Yaman R., Cuzin F., Rassoulzadegan M., Inheritance of an epigenetic mark: The CpG DNA methyltransferase 1 is required for de novo establishment of a complex pattern of non-CpG methylation. PLoS One 2, e1136 (2007). PubMed PMC

Catzeflis F. M., Nevo E., Ahlquist J. E., Sibley C. G., Relationships of the chromosomal species in the Eurasian mole rats of the Spalax ehrenbergi group as determined by DNA-DNA hybridization, and an estimate of the spalacid-murid divergence time. J. Mol. Evol. 29, 223–232 (1989). PubMed

Via S., Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 451–460 (2012). PubMed PMC

Hendry A. P., Evolutionary biology: Speciation. Nature 458, 162–164 (2009). PubMed

Nevo E., Evolution in action: Adaptation and incipient sympatric speciation with gene flow across life at “Evolution Canyon”, Israel. Isr. J. Ecol. Evol. 60, 85–98 (2014).

Nevo E., Selection overrules gene flow at “Evolution Canyons”, Israel. Adv. Genet. Res. 5, 67–89 (2011).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...