Navigation in a Space With Moving Objects: Rats Can Avoid Specific Locations Defined With Respect to a Moving Robot
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33281571
PubMed Central
PMC7689095
DOI
10.3389/fnbeh.2020.576350
Knihovny.cz E-zdroje
- Klíčová slova
- dynamic environment, hippocampus, moving object, navigation, place cells, robot,
- Publikační typ
- časopisecké články MeSH
Animals can organize their behavior with respect to other moving animals or objects; when hunting or escaping a predator, when migrating in groups or during various social interactions. In rats, we aimed to characterize spatial behaviors relative to moving objects and to explore the cognitive mechanisms controlling these behaviors. Three groups of animals were trained to avoid a mild foot-shock delivered in one of three positions: either in front, on the left side, or on the right side of a moving robot. We showed the rats can recognize and avoid these specific areas. The avoidance behavior specific for the left or right side of the robot demonstrated animals not only react to "simple" stimuli such as increasing noise level or growing retinal image of an approaching object, but they process their spatial position relative to the object. Using an all-white robot without prominent visual patterns that would distinguish its different sides, we showed that the behavior does not depend on responses to prominent visual patterns, but that the rats can guide their navigation according to geometrical spatial relationship relative to the moving object. Rats' competence for navigation in space defined by a moving object resembles navigation abilities in stationary space. Recording of hippocampal single unit activity during rat's interaction with the robot proved feasibility of the task to uncover neuronal mechanism of this type of navigation.
Faculty of Science Charles University Prague Czechia
Institute of Physiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Bolles R. C., Fanselow M. S. (1980). A perceptual-recuperative model of fear and pain. Behav. Brain Sci. 3 291–301. 10.1017/s0140525x0000491x DOI
Burke S. N., Barnes C. A. (2015). The neural representation of 3-dimensional objects in rodent memory circuits. Behav. Brain Res. 285 60–66. 10.1016/j.bbr.2014.09.001 PubMed DOI PMC
Burke S. N., Maurer A. P., Hartzell A. L., Nematollahi S., Uprety A., Wallace J. L., et al. (2012). Representation of three-dimensional objects by the rat perirhinal cortex. Hippocampus 22 2032–2044. 10.1002/hipo.22060 PubMed DOI PMC
Danjo T., Toyoizumi T., Fujisawa S. (2018). Spatial representations of self and other in the hippocampus. Science 359 213–218. 10.1126/science.aao3898 PubMed DOI
de Quervain D. J. F., Aerni A., Schelling G., Roozendaal B. (2009). Glucocorticoids and the regulation of memory in health and disease. Front. Neuroendocrinol. 30:358–370. 10.1016/j.yfrne.2009.03.002 PubMed DOI
de Quervain D. J. F., de Roozendaal B., Nitsch R. M., McGaugh J. L., Hock C. (2000). Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nat. Neurosci. 3 313–314. 10.1038/73873 PubMed DOI
del Angel Ortiz R., Contreras C. M., Gutiérrez-Garcia A. G., González M. F. M. (2016). Social interaction test between a rat and a robot: a pilot study. Int. J. Adv. Robot. Syst. 13:41 10.5772/62015 DOI
Deshmukh S. S., Johnson J. L., Knierim J. J. (2012). Perirhinal cortex represents nonspatial,but not spatial, information in rats foraging in the presence of objects: comparison with lateral entorhinal cortex. Hippocampus 22 2045–2058. 10.1002/hipo.22046 PubMed DOI PMC
Deshmukh S. S., Knierim J. J. (2011). Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front. Behav. Neurosci. 5:69. 10.3389/fnbeh.2011.00069 PubMed DOI PMC
Dorfman A., Nielbo K. L., Eilam D. (2016). Traveling companions add complexity and hinder performance in the spatial behavior of rats. PLoS One 11:e0146137. 10.1371/journal.pone.0146137 PubMed DOI PMC
Fanselow M. S., Lester L. S. (1988). “A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior,” in Evolution and Learning, eds Bolles R. C., Beecher M. D. (New Jersey: Lawrence Erlbaum Associates, Inc; ), 185–212.
Gianelli S., Harland B., Fellous J. M. (2018). A new rat-compatible robotic framework for spatial navigation behavioral experiments. J. Neurosci. Methods 294 40–50. 10.1016/j.jneumeth.2017.10.021 PubMed DOI
Gothard K. M., Skaggs W. E., Moore K. M., McNaughton B. L. (1996). Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark based navigation task. J. Neurosci. 16 823–835. 10.1523/jneurosci.16-02-00823.1996 PubMed DOI PMC
Hayman R., Verriotis M. A., Jovalekic A., Fenton A. A., Jeffery K. J. (2011). Anisotropic encoding of three-dimensional space by place cells and grid cells. Nat. Neurosci. 14 1182–1188. 10.1038/nn.2892 PubMed DOI PMC
Ho S. A., Hori E., Kobayashi T., Umeno K., Tran A. H., Ono T., et al. (2008). Hippocampal place cell activity during chasing of a moving object associated with reward in rats. Neuroscience 157 254–270. 10.1016/j.neuroscience.2008.09.004 PubMed DOI
Høydal ØA., Skytøen E. R., Andersson S. O., Moser M. B., Moser E. I. (2019). Object-vector coding in the medial entorhinal cortex. Nature 568 400–404. 10.1038/s41586-019-1077-7 PubMed DOI
Jezek K., Henriksen E. J., Treves A., Moser E. I., Moser M. B. (2011). Theta-paced flickering between place-cell maps in the hippocampus. Nature 568 400–404. 10.1038/nature10439 PubMed DOI
Jezek K., Lee B. B., Kelemen E., McCarthy K. M., McEwen B. S., Fenton A. A. (2010). Stress-induced out-of-context activation of memory. PLoS Biol. 8:e1000570. 10.1371/journal.pbio.1000570 PubMed DOI PMC
Kelemen E., Bahrendt M., Born J., Inostroza M. (2014). Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state. Hippocampus 24 510–515. 10.1002/hipo.22266 PubMed DOI PMC
Kelemen E., Fenton A. A. (2010). Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol. 8:e1000403. 10.1371/journal.pbio.1000403 PubMed DOI PMC
Kelemen E., Fenton A. A. (2013). Key features of human episodic recollection in the cross-episode retrieval of rat hippocampus representations of space. PLoS Biol. 11:e1001607. 10.1371/journal.pbio.1001607 PubMed DOI PMC
Kelemen E., Fenton A. A. (2016). Coordinating different representations in the hippocampus. Neurobiolo. Learn. Mem. 129 50–59. 10.1016/j.nlm.2015.12.011 PubMed DOI
Kim E. J., Park M., Kong M. S., Park S. G., Cho J., Kim J. J. (2015). Alterations of hippocampal place cells in foraging rats facing a predatory threat. Curr. Biol. 25 1362–1367. 10.1016/j.cub.2015.03.048 PubMed DOI PMC
Kirschbaum C., Wolf O. T., May M., Wippich W., Hellhammer D. H. (1996). Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 58 1475–1483. 10.1016/0024-3205(96)00118-X PubMed DOI
Maheu F. S., Joober R., Lupien S. J. (2005). Declarative memory after stress in humans: differential involvement of the β-adrenergic and corticosteroid systems. J. Clin. Endocrinol. Metab. 90 1697–1704. 10.1210/jc.2004-0009 PubMed DOI
Muller R. U., Kubie J. (1989). The firing of hippocampal place cells predicts the future position of freely moving rats. J. Neurosci. 9 4101–4110. 10.1523/jneurosci.09-12-04101.1989 PubMed DOI PMC
Omer D. B., Maimon S. R., Las L., Ulanovsky N. (2018). Social place-cells in the bat hippocampus. Science 359 218–224. 10.1126/science.aao3474 PubMed DOI
Pastalkova E., Kelemen E., Bures B. (2003). Operant behavior can be triggered by the position of the rat relative to objects rotating on an inaccessible platform. Proc. Natl. Acad. Sci. U.S.A. 100 2094–2099. 10.1073/pnas.0438002100 PubMed DOI PMC
Reddish D. A. (1999). Beyond the Cognitive Map, FROM Place Cells to Episodic Memory. Cambridge, MA: MIT Press.
Rimmele U., Besedovsky L., Lange T., Born J. (2013). Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans. Neuropsychopharmacology 38 884–894. 10.1038/npp.2012.254 PubMed DOI PMC
Rivard B., Li Y., Lenck-Santini P. P., Poucet B., Muller R. U. (2004). Representation of objects in space by two classes of hippocampal pyramidal cells. J. Gen. Physiol. 124 9–25. 10.1085/jgp.200409015 PubMed DOI PMC
Shi Q., Ishii H., Kinoshita S., Takanishi A., Okabayashi S., Iida N., et al. (2013). Modulation of rat behaviour by using a rat-like robot. Bioinspir. Biomim. 8:046002 10.1088/1748-3182/8/4/046002 PubMed DOI
Skaggs W. E., McNaughton B. L., Gothard K. M., Markus E. J. (1993). “An information-theoretic approach to deciphering the hippocampal code,” in Advances in Neural Information Processing Systems, Vol. 5 eds Hanson S. J., Cowan J. D., Giles C. L. (San Mateo, CA: Morgan Kaufmann; ), 1030–1037.
Svoboda J., Lobellova V., Popelikova A., Ahuja N., Kelemen E., Stuchlik A. (2017). Transient inactivation of the anterior cingulate cortex in rats disrupts avoidance of a dynamic object. Neurobiol. Learn. Mem. 139 144–148. 10.1016/j.nlm.2017.01.003 PubMed DOI
Telensky P., Svoboda J., Blahna K., Bures J., Kubik S., Stuchlik A. (2011). Functional inactivation of the rat hippocampus disrupts avoidance of a moving object. Proc. Natl. Acad. Sci. U.S.A. 108 5414–5418. 10.1073/pnas.1102525108 PubMed DOI PMC
Telensky P., Svoboda J., Pastalkova E., Blahna K., Bures J., Stuchlik A. (2009). Enemy avoidance task: a novel behavioral paradigm for assessing spatial avoidance of a moving subject. J. Neurosci. Methods 180 29–33. 10.1016/j.jneumeth.2009.02.010 PubMed DOI
Touretzky D. S., Muller R. U. (2006). Place field dissociation and multiple maps in hippocampus. Neurocomputing 69 1260–1263. 10.1016/j.neucom.2005.12.088 DOI
Wang C., Xiaojing C., Lee H., Deshmukh S. S., Yoganarasimha D., Savelli F., et al. (2018). Egocentric coding of external items in the lateral entorhinal cortex. Science 362 945–949. 10.1126/science.aau4940 PubMed DOI PMC
Weible A. P., Rowland D. C., Monaghan C. K., Wolfgang N. T., Kentros C. G. (2012). Neural correlates of long-term object memory in the mouse anterior cingulate cortex. J. Neurosci. 32 5598–5608. 10.1523/jneurosci.5265-11.2012 PubMed DOI PMC
Weible A. P., Rowland D. C., Pang R., Kentros C. G. (2009). Neural correlates of novel object and novel location recognition behavior in the mouse anterior cingulate cortex. J. Neurophysiol. 102 2055–2068. 10.1152/jn.00214.2009 PubMed DOI
Wilhelm I., Wagner U., Born J. (2011). Opposite effects of cortisol on consolidation of temporal sequence memory during waking and sleep. J. Cogn. Neurosci. 23 3703–3712. 10.1162/jocn_a_00093 PubMed DOI
Wolf O. T. (2009). Stress and memory in humans: twelve years of progress? Brain Res. 1293 142–154. 10.1016/j.brainres.2009.04.013 PubMed DOI
Zynyuk L., Huxter J., Muller R. U., Fox S. E. (2012). The presence of a second rat has only subtle effects on the location-specific firing of hippocampal place cells. Hippocampus 22 1405–1416. 10.1002/hipo.20977 PubMed DOI