Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/J00751X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
IAA, TEC3706
Biotechnology and Biological Sciences Research Council - United Kingdom
IAA PIII-024
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/R012385/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33284343
PubMed Central
PMC7813475
DOI
10.1042/bcj20200674
PII: 227165
Knihovny.cz E-resources
- Keywords
- CD20, comparative medicine, hydrogen deuterium exchange mass spectrometry, lymphoma, monoclonal antibody,
- MeSH
- Antigens, CD20 immunology MeSH
- Chromatography, Liquid MeSH
- Immunoglobulin G chemistry MeSH
- Kinetics MeSH
- Immunoglobulin Light Chains genetics metabolism MeSH
- Humans MeSH
- Antibodies, Monoclonal chemistry genetics MeSH
- Cell Line, Tumor MeSH
- Peptide Library MeSH
- Dogs MeSH
- Recombinant Fusion Proteins MeSH
- Amino Acid Sequence MeSH
- Tandem Mass Spectrometry MeSH
- Immunoglobulin Heavy Chains genetics metabolism MeSH
- Binding Sites, Antibody MeSH
- Hydrogen Deuterium Exchange-Mass Spectrometry * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, CD20 MeSH
- Immunoglobulin G MeSH
- Immunoglobulin Light Chains MeSH
- Antibodies, Monoclonal MeSH
- Peptide Library MeSH
- Recombinant Fusion Proteins MeSH
- Immunoglobulin Heavy Chains MeSH
A comparative canine-human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine-canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine-murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human-murine chimeric anti-CD20 antibody Rituximab.
Institut de Génétique Moléculaire INSERM Unité 940 Université Paris 7 Hôpital St Louis Paris France
Institute of Genetics and Molecular Medicine University of Edinburgh EH4 2XR Edinburgh U K
Sciex Phoenix House Lakeside Drive Centre Park WA1 1RX Warrington U K
See more in PubMed
Hanahan D. and Weinberg R.A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646–674 10.1016/j.cell.2011.02.013 PubMed DOI
van Helden P.D., van Helden L.S. and Hoal E.G. (2013) One world, one health. Humans, animals and the environment are inextricably linked–a fact that needs to be remembered and exploited in our modern approach to health. EMBO Rep. 14, 497–501 10.1038/embor.2013.61 PubMed DOI PMC
Alirol E., Getaz L., Stoll B., Chappuis F. and Loutan L. (2011) Urbanisation and infectious diseases in a globalised world. Lancet Infect. Dis. 11, 131–141 10.1016/S1473-3099(10)70223-1 PubMed DOI PMC
Morcos P.N., Boehnke A., Valente N. and Mager D.E. (2019) Rituximab dosing in hematological malignancies: an old question, revisited. Cancer Chemother. Pharmacol. 84, 661–666 10.1007/s00280-019-03818-1 PubMed DOI
Ingles Garces A.H., Au L., Mason R., Thomas J. and Larkin J. (2019) Building on the anti-PD1/PD-L1 backbone: combination immunotherapy for cancer. Exp. Opin. Invest. Drugs 28, 695–708 10.1080/13543784.2019.1649657 PubMed DOI
Van Allen E.M., Miao D., Schilling B., Shukla S.A., Blank C., Zimmer L. et al. (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 10.1126/science.aad0095 PubMed DOI PMC
Scott A.M., Wolchok J.D. and Old L.J. (2012) Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 10.1038/nrc3236 PubMed DOI
Bakacs T., Mehrishi J.N. and Moss R.W. (2012) Ipilimumab (Yervoy) and the TGN1412 catastrophe. Immunobiology 217, 583–589 10.1016/j.imbio.2011.07.005 PubMed DOI
Fares C.M., Van Allen E.M., Drake C.G., Allison J.P. and Hu-Lieskovan S. (2019) Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book 39, 147–164 10.1200/EDBK_240837 PubMed DOI
Khanna C., Lindblad-Toh K., Vail D., London C., Bergman P., Barber L. et al. (2006) The dog as a cancer model. Nat. Biotechnol. 24, 1065–1066 10.1038/nbt0906-1065b PubMed DOI
Shao Y.W., Wood G.A., Lu J., Tang Q.L., Liu J., Molyneux S. et al. (2019) Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene 38, 291–298 10.1038/s41388-018-0444-4 PubMed DOI PMC
Diessner B.J., Marko T.A., Scott R.M., Eckert A.L., Stuebner K.M., Hohenhaus A.E. et al. (2019) A comparison of risk factors for metastasis at diagnosis in humans and dogs with osteosarcoma. Cancer Med. 8, 3216–3226 10.1002/cam4.2177 PubMed DOI PMC
Fazekas-Singer J., Berroteran-Infante N., Rami-Mark C., Dumanic M., Matz M., Willmann M. et al. (2017) Development of a radiolabeled caninized anti-EGFR antibody for comparative oncology trials. Oncotarget 8, 83128–83141 10.18632/oncotarget.20914 PubMed DOI PMC
Singer J., Fazekas J., Wang W., Weichselbaumer M., Matz M., Mader A. et al. (2014) Generation of a canine anti-EGFR (ErbB-1) antibody for passive immunotherapy in dog cancer patients. Mol. Cancer Ther. 13, 1777–1790 10.1158/1535-7163.MCT-13-0288 PubMed DOI PMC
Amin S.B., Anderson K.J., Boudreau C.E., Martinez-Ledesma E., Kocakavuk E., Johnson K.C. et al. (2020) Comparative molecular life history of spontaneous canine and human gliomas. Cancer Cell 37, 243–257.e247 10.1016/j.ccell.2020.01.004 PubMed DOI PMC
MacDiarmid J.A., Langova V., Bailey D., Pattison S.T., Pattison S.L., Christensen N. et al. (2016) Targeted doxorubicin delivery to brain tumors via minicells: proof of principle using dogs with spontaneously occurring tumors as a model. PLoS One 11, e0151832 10.1371/journal.pone.0151832 PubMed DOI PMC
Perosa F., Favoino E., Caragnano M.A., Prete M. and Dammacco F. (2005) CD20: a target antigen for immunotherapy of autoimmune diseases. Autoimmun. Rev. 4, 526–531 10.1016/j.autrev.2005.04.004 PubMed DOI
Ernst J.A., Li H., Kim H.S., Nakamura G.R., Yansura D.G. and Vandlen R.L. (2005) Isolation and characterization of the B-cell marker CD20. Biochemistry 44, 15150–15158 10.1021/bi0511078 PubMed DOI
Griffin M.M. and Morley N. (2013) Rituximab in the treatment of non-Hodgkin's lymphoma–a critical evaluation of randomized controlled trials. Exp. Opin. Biol. Ther. 13, 803–811 10.1517/14712598.2013.786698 PubMed DOI
Maloney D.G., Grillo-Lopez A.J., White C.A., Bodkin D., Schilder R.J., Neidhart J.A. et al. (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 10.1182/blood.V90.6.2188 PubMed DOI
Chambers S.A. and Isenberg D. (2005) Anti-B cell therapy (rituximab) in the treatment of autoimmune diseases. Lupus 14, 210–214 10.1191/0961203305lu2138oa PubMed DOI
Sinha A. and Bagga A. (2013) Rituximab therapy in nephrotic syndrome: implications for patients’ management. Nat. Rev. Nephrol. 9, 154–169 10.1038/nrneph.2012.289 PubMed DOI
Lee S. and Ballow M. (2010) Monoclonal antibodies and fusion proteins and their complications: targeting B cells in autoimmune diseases. J. Allergy Clin. Immunol. 125, 814–820 10.1016/j.jaci.2010.02.025 PubMed DOI
Castillo-Trivino T., Braithwaite D., Bacchetti P. and Waubant E. (2013) Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One 8, e66308 10.1371/journal.pone.0066308 PubMed DOI PMC
Vo A.A., Choi J., Cisneros K., Reinsmoen N., Haas M., Ge S. et al. (2014) Benefits of rituximab combined with intravenous immunoglobulin for desensitization in kidney transplant recipients. Transplantation 98, 312–319 10.1097/TP.0000000000000064 PubMed DOI
Vital E.M., Kay J. and Emery P. (2013) Rituximab biosimilars. Exp. Opin. Biol. Ther. 13, 1049–1062 10.1517/14712598.2013.787064 PubMed DOI
Pouget J.P., Navarro-Teulon I., Bardies M., Chouin N., Cartron G., Pelegrin A. et al. (2011) Clinical radioimmunotherapy–the role of radiobiology. Nat. Rev. Clin. Oncol. 8, 720–734 10.1038/nrclinonc.2011.160 PubMed DOI
Wiseman G.A., Gordon L.I., Multani P.S., Witzig T.E., Spies S., Bartlett N.L. et al. (2002) Ibritumomab tiuxetan radioimmunotherapy for patients with relapsed or refractory non-Hodgkin lymphoma and mild thrombocytopenia: a phase II multicenter trial. Blood 99, 4336–4342 10.1182/blood.V99.12.4336 PubMed DOI
Kasi P.M., Tawbi H.A., Oddis C.V. and Kulkarni H.S. (2012) Clinical review: Serious adverse events associated with the use of rituximab - a critical care perspective. Crit. Care 16, 231 10.1186/cc11304 PubMed DOI PMC
Mudaliar M.A., Haggart R.D., Miele G., Sellar G., Tan K.A., Goodlad J.R. et al. (2013) Comparative gene expression profiling identifies common molecular signatures of NF-kappaB activation in canine and human diffuse large B cell lymphoma (DLBCL). PLoS One 8, e72591 10.1371/journal.pone.0072591 PubMed DOI PMC
Argyle D.J. and Pecceu E. (2016) Canine and feline lymphoma: challenges and opportunities for creating a paradigm shift. Vet. Comp. Oncol. 14, 1–7 10.1111/vco.12253 PubMed DOI
Jain S., Aresu L., Comazzi S., Shi J., Worrall E., Clayton J. et al. (2016) The development of a recombinant scFv monoclonal antibody targeting canine CD20 for use in comparative medicine. PLoS One 11, e0148366 10.1371/journal.pone.0148366 PubMed DOI PMC
Ito D., Brewer S., Modiano J.F. and Beall M.J. (2015) Development of a novel anti-canine CD20 monoclonal antibody with diagnostic and therapeutic potential. Leuk. Lymphoma 56, 219–225 10.3109/10428194.2014.914193 PubMed DOI PMC
Rutgen B.C., Willenbrock S., Reimann-Berg N., Walter I., Fuchs-Baumgartinger A., Wagner S. et al. (2012) Authentication of primordial characteristics of the CLBL-1 cell line prove the integrity of a canine B-cell lymphoma in a murine in vivo model. PLoS One 7, e40078 10.1371/journal.pone.0040078 PubMed DOI PMC
Masson G.R., Burke J.E., Ahn N.G., Anand G.S., Borchers C., Brier S. et al. (2019) Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 10.1038/s41592-019-0459-y PubMed DOI PMC
Kavan D. and M P. (2011) MSTools-Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 302, 53–58 10.1016/j.ijms.2010.07.030 DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J. et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC
Islam M.T., Mohamedali A., Fernandes C.S., Baker M.S. and Ranganathan S. (2017) De novo peptide sequencing: deep mining of high-Resolution mass spectrometry data. Methods Mol. Biol. 1549, 119–134 10.1007/978-1-4939-6740-7_10 PubMed DOI
Fornelli L., Srzentic K., Huguet R., Mullen C., Sharma S., Zabrouskov V. et al. (2018) Accurate sequence analysis of a monoclonal antibody by top-down and middle-down orbitrap mass spectrometry applying multiple Ion activation techniques. Anal. Chem. 90, 8421–8429 10.1021/acs.analchem.8b00984 PubMed DOI PMC
Tang L., Sampson C., Dreitz M.J. and McCall C. (2001) Cloning and characterization of cDNAs encoding four different canine immunoglobulin gamma chains. Vet. Immunol. Immunopathol. 80, 259–270 10.1016/S0165-2427(01)00318-X PubMed DOI
Teeling J.L., Mackus W.J., Wiegman L.J., van den Brakel J.H., Beers S.A., French R.R. et al. (2006) The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol. 177, 362–371 10.4049/jimmunol.177.1.362 PubMed DOI
Unruh T.L., Zuccolo J., Beers S.A., Kanevets U., Shi Y. and Deans J.P. (2010) Therapeutic (high) doses of rituximab activate calcium mobilization and inhibit B-cell growth via an unusual mechanism triggered independently of both CD20 and Fcgamma receptors. J. Immunother. 33, 30–39 10.1097/CJI.0b013e3181b290f1 PubMed DOI
Berkman P., Vardinon N. and Yust I. (2002) Antibody dependent cell mediated cytotoxicity and phagocytosis of senescent erythrocytes by autologous peripheral blood mononuclear cells. Autoimmunity 35, 415–419 10.1080/0891693021000005394 PubMed DOI
Kheterpal I., Cook K.D. and Wetzel R. (2006) Hydrogen/deuterium exchange mass spectrometry analysis of protein aggregates. Methods Enzymol. 413, 140–166 10.1016/S0076-6879(06)13008-6 PubMed DOI
Galanti M., Fanelli D. and Piazza F. (2016) Conformation-controlled binding kinetics of antibodies. Sci. Rep. 6, 18976 10.1038/srep18976 PubMed DOI PMC
Coiffier B., Lepage E., Briere J., Herbrecht R., Tilly H., Bouabdallah R. et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 10.1056/NEJMoa011795 PubMed DOI
Yang J., Zhu H., Tan Z., He F., Sun X., Hong Y. et al. (2013) Comparison of two functional kappa light-chain transcripts amplified from a hybridoma. Biotechnol. Appl. Biochem. 60, 289–297 10.1002/bab.1080 PubMed DOI
Zhang B., Yang Y., Yuk I., Pai R., McKay P., Eigenbrot C. et al. (2008) Unveiling a glycation hot spot in a recombinant humanized monoclonal antibody. Anal. Chem. 80, 2379–2390 10.1021/ac701810q PubMed DOI
Mao Y., Zhang L., Kleinberg A., Xia Q., Daly T.J. and Li N. (2019) Fast protein sequencing of monoclonal antibody by real-time digestion on emitter during nanoelectrospray. Monoclon. Antibodies 11, 767–778 10.1080/19420862.2019.1599633 PubMed DOI PMC
Laskay U.A., Srzentic K., Monod M. and Tsybin Y.O. (2014) Extended bottom-up proteomics with secreted aspartic protease Sap9. J. Proteomics 110, 20–31 10.1016/j.jprot.2014.07.035 PubMed DOI
Kaever T., Meng X., Matho M.H., Schlossman A., Li S., Sela-Culang I. et al. (2014) Potent neutralization of vaccinia virus by divergent murine antibodies targeting a common site of vulnerability in L1 protein. J. Virol. 88, 11339–11355 10.1128/JVI.01491-14 PubMed DOI PMC
Yan Y., Wei H., Fu Y., Jusuf S., Zeng M., Ludwig R. et al. (2016) Isomerization and oxidation in the complementarity-Determining regions of a monoclonal antibody: a study of the modification-structure-function correlations by hydrogen-dDeuterium exchange mass spectrometry. Anal. Chem. 88, 2041–2050 10.1021/acs.analchem.5b02800 PubMed DOI
Felberg A., Urban A., Borowska A., Stasilojc G., Taszner M., Hellmann A. et al. (2019) Mutations resulting in the formation of hyperactive complement convertases support cytocidal effect of anti-CD20 immunotherapeutics. Cancer Immunol. Immunother. 68, 587–598 10.1007/s00262-019-02304-0 PubMed DOI PMC