• This record comes from PubMed

Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody

. 2021 Jan 15 ; 478 (1) : 99-120.

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
BB/J00751X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
IAA, TEC3706 Biotechnology and Biological Sciences Research Council - United Kingdom
IAA PIII-024 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/R012385/1 Biotechnology and Biological Sciences Research Council - United Kingdom

A comparative canine-human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine-canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine-murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human-murine chimeric anti-CD20 antibody Rituximab.

See more in PubMed

Hanahan D. and Weinberg R.A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646–674 10.1016/j.cell.2011.02.013 PubMed DOI

van Helden P.D., van Helden L.S. and Hoal E.G. (2013) One world, one health. Humans, animals and the environment are inextricably linked–a fact that needs to be remembered and exploited in our modern approach to health. EMBO Rep. 14, 497–501 10.1038/embor.2013.61 PubMed DOI PMC

Alirol E., Getaz L., Stoll B., Chappuis F. and Loutan L. (2011) Urbanisation and infectious diseases in a globalised world. Lancet Infect. Dis. 11, 131–141 10.1016/S1473-3099(10)70223-1 PubMed DOI PMC

Morcos P.N., Boehnke A., Valente N. and Mager D.E. (2019) Rituximab dosing in hematological malignancies: an old question, revisited. Cancer Chemother. Pharmacol. 84, 661–666 10.1007/s00280-019-03818-1 PubMed DOI

Ingles Garces A.H., Au L., Mason R., Thomas J. and Larkin J. (2019) Building on the anti-PD1/PD-L1 backbone: combination immunotherapy for cancer. Exp. Opin. Invest. Drugs 28, 695–708 10.1080/13543784.2019.1649657 PubMed DOI

Van Allen E.M., Miao D., Schilling B., Shukla S.A., Blank C., Zimmer L. et al. (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 10.1126/science.aad0095 PubMed DOI PMC

Scott A.M., Wolchok J.D. and Old L.J. (2012) Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 10.1038/nrc3236 PubMed DOI

Bakacs T., Mehrishi J.N. and Moss R.W. (2012) Ipilimumab (Yervoy) and the TGN1412 catastrophe. Immunobiology 217, 583–589 10.1016/j.imbio.2011.07.005 PubMed DOI

Fares C.M., Van Allen E.M., Drake C.G., Allison J.P. and Hu-Lieskovan S. (2019) Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book 39, 147–164 10.1200/EDBK_240837 PubMed DOI

Khanna C., Lindblad-Toh K., Vail D., London C., Bergman P., Barber L. et al. (2006) The dog as a cancer model. Nat. Biotechnol. 24, 1065–1066 10.1038/nbt0906-1065b PubMed DOI

Shao Y.W., Wood G.A., Lu J., Tang Q.L., Liu J., Molyneux S. et al. (2019) Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene 38, 291–298 10.1038/s41388-018-0444-4 PubMed DOI PMC

Diessner B.J., Marko T.A., Scott R.M., Eckert A.L., Stuebner K.M., Hohenhaus A.E. et al. (2019) A comparison of risk factors for metastasis at diagnosis in humans and dogs with osteosarcoma. Cancer Med. 8, 3216–3226 10.1002/cam4.2177 PubMed DOI PMC

Fazekas-Singer J., Berroteran-Infante N., Rami-Mark C., Dumanic M., Matz M., Willmann M. et al. (2017) Development of a radiolabeled caninized anti-EGFR antibody for comparative oncology trials. Oncotarget 8, 83128–83141 10.18632/oncotarget.20914 PubMed DOI PMC

Singer J., Fazekas J., Wang W., Weichselbaumer M., Matz M., Mader A. et al. (2014) Generation of a canine anti-EGFR (ErbB-1) antibody for passive immunotherapy in dog cancer patients. Mol. Cancer Ther. 13, 1777–1790 10.1158/1535-7163.MCT-13-0288 PubMed DOI PMC

Amin S.B., Anderson K.J., Boudreau C.E., Martinez-Ledesma E., Kocakavuk E., Johnson K.C. et al. (2020) Comparative molecular life history of spontaneous canine and human gliomas. Cancer Cell 37, 243–257.e247 10.1016/j.ccell.2020.01.004 PubMed DOI PMC

MacDiarmid J.A., Langova V., Bailey D., Pattison S.T., Pattison S.L., Christensen N. et al. (2016) Targeted doxorubicin delivery to brain tumors via minicells: proof of principle using dogs with spontaneously occurring tumors as a model. PLoS One 11, e0151832 10.1371/journal.pone.0151832 PubMed DOI PMC

Perosa F., Favoino E., Caragnano M.A., Prete M. and Dammacco F. (2005) CD20: a target antigen for immunotherapy of autoimmune diseases. Autoimmun. Rev. 4, 526–531 10.1016/j.autrev.2005.04.004 PubMed DOI

Ernst J.A., Li H., Kim H.S., Nakamura G.R., Yansura D.G. and Vandlen R.L. (2005) Isolation and characterization of the B-cell marker CD20. Biochemistry 44, 15150–15158 10.1021/bi0511078 PubMed DOI

Griffin M.M. and Morley N. (2013) Rituximab in the treatment of non-Hodgkin's lymphoma–a critical evaluation of randomized controlled trials. Exp. Opin. Biol. Ther. 13, 803–811 10.1517/14712598.2013.786698 PubMed DOI

Maloney D.G., Grillo-Lopez A.J., White C.A., Bodkin D., Schilder R.J., Neidhart J.A. et al. (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 10.1182/blood.V90.6.2188 PubMed DOI

Chambers S.A. and Isenberg D. (2005) Anti-B cell therapy (rituximab) in the treatment of autoimmune diseases. Lupus 14, 210–214 10.1191/0961203305lu2138oa PubMed DOI

Sinha A. and Bagga A. (2013) Rituximab therapy in nephrotic syndrome: implications for patients’ management. Nat. Rev. Nephrol. 9, 154–169 10.1038/nrneph.2012.289 PubMed DOI

Lee S. and Ballow M. (2010) Monoclonal antibodies and fusion proteins and their complications: targeting B cells in autoimmune diseases. J. Allergy Clin. Immunol. 125, 814–820 10.1016/j.jaci.2010.02.025 PubMed DOI

Castillo-Trivino T., Braithwaite D., Bacchetti P. and Waubant E. (2013) Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One 8, e66308 10.1371/journal.pone.0066308 PubMed DOI PMC

Vo A.A., Choi J., Cisneros K., Reinsmoen N., Haas M., Ge S. et al. (2014) Benefits of rituximab combined with intravenous immunoglobulin for desensitization in kidney transplant recipients. Transplantation 98, 312–319 10.1097/TP.0000000000000064 PubMed DOI

Vital E.M., Kay J. and Emery P. (2013) Rituximab biosimilars. Exp. Opin. Biol. Ther. 13, 1049–1062 10.1517/14712598.2013.787064 PubMed DOI

Pouget J.P., Navarro-Teulon I., Bardies M., Chouin N., Cartron G., Pelegrin A. et al. (2011) Clinical radioimmunotherapy–the role of radiobiology. Nat. Rev. Clin. Oncol. 8, 720–734 10.1038/nrclinonc.2011.160 PubMed DOI

Wiseman G.A., Gordon L.I., Multani P.S., Witzig T.E., Spies S., Bartlett N.L. et al. (2002) Ibritumomab tiuxetan radioimmunotherapy for patients with relapsed or refractory non-Hodgkin lymphoma and mild thrombocytopenia: a phase II multicenter trial. Blood 99, 4336–4342 10.1182/blood.V99.12.4336 PubMed DOI

Kasi P.M., Tawbi H.A., Oddis C.V. and Kulkarni H.S. (2012) Clinical review: Serious adverse events associated with the use of rituximab - a critical care perspective. Crit. Care 16, 231 10.1186/cc11304 PubMed DOI PMC

Mudaliar M.A., Haggart R.D., Miele G., Sellar G., Tan K.A., Goodlad J.R. et al. (2013) Comparative gene expression profiling identifies common molecular signatures of NF-kappaB activation in canine and human diffuse large B cell lymphoma (DLBCL). PLoS One 8, e72591 10.1371/journal.pone.0072591 PubMed DOI PMC

Argyle D.J. and Pecceu E. (2016) Canine and feline lymphoma: challenges and opportunities for creating a paradigm shift. Vet. Comp. Oncol. 14, 1–7 10.1111/vco.12253 PubMed DOI

Jain S., Aresu L., Comazzi S., Shi J., Worrall E., Clayton J. et al. (2016) The development of a recombinant scFv monoclonal antibody targeting canine CD20 for use in comparative medicine. PLoS One 11, e0148366 10.1371/journal.pone.0148366 PubMed DOI PMC

Ito D., Brewer S., Modiano J.F. and Beall M.J. (2015) Development of a novel anti-canine CD20 monoclonal antibody with diagnostic and therapeutic potential. Leuk. Lymphoma 56, 219–225 10.3109/10428194.2014.914193 PubMed DOI PMC

Rutgen B.C., Willenbrock S., Reimann-Berg N., Walter I., Fuchs-Baumgartinger A., Wagner S. et al. (2012) Authentication of primordial characteristics of the CLBL-1 cell line prove the integrity of a canine B-cell lymphoma in a murine in vivo model. PLoS One 7, e40078 10.1371/journal.pone.0040078 PubMed DOI PMC

Masson G.R., Burke J.E., Ahn N.G., Anand G.S., Borchers C., Brier S. et al. (2019) Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 10.1038/s41592-019-0459-y PubMed DOI PMC

Kavan D. and M P. (2011) MSTools-Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 302, 53–58 10.1016/j.ijms.2010.07.030 DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J. et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC

Islam M.T., Mohamedali A., Fernandes C.S., Baker M.S. and Ranganathan S. (2017) De novo peptide sequencing: deep mining of high-Resolution mass spectrometry data. Methods Mol. Biol. 1549, 119–134 10.1007/978-1-4939-6740-7_10 PubMed DOI

Fornelli L., Srzentic K., Huguet R., Mullen C., Sharma S., Zabrouskov V. et al. (2018) Accurate sequence analysis of a monoclonal antibody by top-down and middle-down orbitrap mass spectrometry applying multiple Ion activation techniques. Anal. Chem. 90, 8421–8429 10.1021/acs.analchem.8b00984 PubMed DOI PMC

Tang L., Sampson C., Dreitz M.J. and McCall C. (2001) Cloning and characterization of cDNAs encoding four different canine immunoglobulin gamma chains. Vet. Immunol. Immunopathol. 80, 259–270 10.1016/S0165-2427(01)00318-X PubMed DOI

Teeling J.L., Mackus W.J., Wiegman L.J., van den Brakel J.H., Beers S.A., French R.R. et al. (2006) The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol. 177, 362–371 10.4049/jimmunol.177.1.362 PubMed DOI

Unruh T.L., Zuccolo J., Beers S.A., Kanevets U., Shi Y. and Deans J.P. (2010) Therapeutic (high) doses of rituximab activate calcium mobilization and inhibit B-cell growth via an unusual mechanism triggered independently of both CD20 and Fcgamma receptors. J. Immunother. 33, 30–39 10.1097/CJI.0b013e3181b290f1 PubMed DOI

Berkman P., Vardinon N. and Yust I. (2002) Antibody dependent cell mediated cytotoxicity and phagocytosis of senescent erythrocytes by autologous peripheral blood mononuclear cells. Autoimmunity 35, 415–419 10.1080/0891693021000005394 PubMed DOI

Kheterpal I., Cook K.D. and Wetzel R. (2006) Hydrogen/deuterium exchange mass spectrometry analysis of protein aggregates. Methods Enzymol. 413, 140–166 10.1016/S0076-6879(06)13008-6 PubMed DOI

Galanti M., Fanelli D. and Piazza F. (2016) Conformation-controlled binding kinetics of antibodies. Sci. Rep. 6, 18976 10.1038/srep18976 PubMed DOI PMC

Coiffier B., Lepage E., Briere J., Herbrecht R., Tilly H., Bouabdallah R. et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 10.1056/NEJMoa011795 PubMed DOI

Yang J., Zhu H., Tan Z., He F., Sun X., Hong Y. et al. (2013) Comparison of two functional kappa light-chain transcripts amplified from a hybridoma. Biotechnol. Appl. Biochem. 60, 289–297 10.1002/bab.1080 PubMed DOI

Zhang B., Yang Y., Yuk I., Pai R., McKay P., Eigenbrot C. et al. (2008) Unveiling a glycation hot spot in a recombinant humanized monoclonal antibody. Anal. Chem. 80, 2379–2390 10.1021/ac701810q PubMed DOI

Mao Y., Zhang L., Kleinberg A., Xia Q., Daly T.J. and Li N. (2019) Fast protein sequencing of monoclonal antibody by real-time digestion on emitter during nanoelectrospray. Monoclon. Antibodies 11, 767–778 10.1080/19420862.2019.1599633 PubMed DOI PMC

Laskay U.A., Srzentic K., Monod M. and Tsybin Y.O. (2014) Extended bottom-up proteomics with secreted aspartic protease Sap9. J. Proteomics 110, 20–31 10.1016/j.jprot.2014.07.035 PubMed DOI

Kaever T., Meng X., Matho M.H., Schlossman A., Li S., Sela-Culang I. et al. (2014) Potent neutralization of vaccinia virus by divergent murine antibodies targeting a common site of vulnerability in L1 protein. J. Virol. 88, 11339–11355 10.1128/JVI.01491-14 PubMed DOI PMC

Yan Y., Wei H., Fu Y., Jusuf S., Zeng M., Ludwig R. et al. (2016) Isomerization and oxidation in the complementarity-Determining regions of a monoclonal antibody: a study of the modification-structure-function correlations by hydrogen-dDeuterium exchange mass spectrometry. Anal. Chem. 88, 2041–2050 10.1021/acs.analchem.5b02800 PubMed DOI

Felberg A., Urban A., Borowska A., Stasilojc G., Taszner M., Hellmann A. et al. (2019) Mutations resulting in the formation of hyperactive complement convertases support cytocidal effect of anti-CD20 immunotherapeutics. Cancer Immunol. Immunother. 68, 587–598 10.1007/s00262-019-02304-0 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...