Zanubrutinib for the treatment of MYD88 wild-type Waldenström macroglobulinemia: a substudy of the phase 3 ASPEN trial
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu klinické zkoušky, fáze III, časopisecké články, randomizované kontrolované studie, práce podpořená grantem
PubMed
33284944
PubMed Central
PMC7724905
DOI
10.1182/bloodadvances.2020003010
PII: S2473-9529(20)32027-9
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- myeloidní diferenciační faktor 88 * genetika MeSH
- piperidiny MeSH
- pyrazoly škodlivé účinky MeSH
- pyrimidiny škodlivé účinky MeSH
- Waldenströmova makroglobulinemie * farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- myeloidní diferenciační faktor 88 * MeSH
- piperidiny MeSH
- pyrazoly MeSH
- pyrimidiny MeSH
- zanubrutinib MeSH Prohlížeč
Patients with Waldenström macroglobulinemia (WM) lacking activating mutations in the MYD88 gene (MYD88WT) have demonstrated relatively poor outcomes to ibrutinib monotherapy, with no major responses reported in a phase 2 pivotal study. Zanubrutinib is a novel, selective Bruton tyrosine kinase (BTK) inhibitor designed to maximize BTK occupancy and minimize off-target activity. The ASPEN study consisted of a randomized comparison of zanubrutinib and ibrutinib efficacy and safety in patients with WM who have the MYD88 mutation, as well as a separate cohort of patients without MYD88 mutation (MYD88WT) or with unknown mutational status who received zanubrutinib. Results from the latter single-arm cohort are reported herein. Efficacy endpoints included overall, major and complete (CR) or very good partial response (VGPR) rates, progression-free survival (PFS), duration of response (DOR), and overall survival (OS). Twenty-eight patients (23 relapsed/refractory; 5 treatment-naïve) were enrolled, including 26 with centrally confirmed MYD88WT disease and 2 with unknown MYD88 mutational status. At a median follow-up of 17.9 months, 7 of 26 MYD88WT patients (27%) had achieved a VGPR and 50% a major response (partial response or better); there were no CRs. At 18 months, the estimated PFS and OS rates were 68% and 88%, respectively, while the median DOR had not been reached. Two patients discontinued zanubrutinib due to adverse events. Treatment-emergent hypertension, atrial fibrillation, and major hemorrhages were reported in 3, 1 and 2 patients (including 1 concurrent with enoxaparin therapy), respectively. Results of this substudy demonstrate that zanubrutinib monotherapy can induce high quality responses in patients with MYD88WT WM. This trial is registered on www.clinicaltrials.gov as NCT #03053440.
AO Spedali Civili di Brescia Lombardia Italy
ASST Grande Ospedale Metropolitano Niguarda Milan Italy
Azienda Ospedaliero Universitaria di Bologna Bologna Italy
BeiGene Switzerland GmbH Basel Switzerland
Bing Center for Waldenström Macroglobulinemia Dana Farber Cancer Institute Boston MA
City of Hope National Medical Center Duarte CA
Clinical Hematology Department Sorbonne University Pitié Salpêtrière Hospital Paris France
Comprehensive Cancer Center Ulm Universitätsklinikum Ulm Baden Württemberg Germany
Concord Repatriation General Hospital Sydney Concord NSW Australia
Department of Clinical Therapeutics National and Kapodistrian University of Athens Athens Greece
Department of Haematology Flinders Medical Centre Adelaide SA Australia
Department of Hematology School of Clinical Sciences Monash University Clayton VIC Australia
Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo Pavia Italy
Hospital de La Santa Creu i Sant Pau Barcelona Spain
Hospital Universitario de Salamanca Salamanca Spain
Hospital Universitario Fundación Jiménez Díaz Madrid Spain
Hospital Universitario Vall d'Hebrón Barcelona Spain
Institut Català d'Oncologia Hospital Universitari Germans Trias i Pujol Barcelona Spain
Medical Oncology Harvard Medical School Boston MA
Pathology and Laboratory Medicine University of Western Australia Perth WA Australia
Peter MacCallum Cancer Centre Melbourne VIC Australia
Plymouth Hospitals National Health Service Trust Derriford Hospital Devon United Kingdom
Royal Melbourne Hospital Parkville VIC Australia
Royal North Shore Hospital Sydney NSW Australia
Sir Charles Gairdner Hospital Perth WA Australia
St James University Hospital Leeds United Kingdom
St Vincent's Hospital Fitzroy VIC Australia
Szpital Uniwersytecki nr 2 Dr Jana Biziela Kujawsko pomorskie Bydgoszcz Poland
The John Curtin School of Medical Research Australian National University Canberra ACT Australia
University College London Hospital Foundation Trust London United Kingdom
Uniwersytecki Szpital Kliniczny w Bialymstoku Podlaskie Poland
Zobrazit více v PubMed
Gertz MA. Waldenström macroglobulinemia: 2019 update on diagnosis, risk stratification, and management. Am J Hematol. 2019;94(2):266-276. PubMed
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies [published correction appears in Mol Cancer. 2019;18(1):79]. Mol Cancer. 2018;17(1):57. PubMed PMC
Argyropoulos KV, Vogel R, Ziegler C, et al. . Clonal B cells in Waldenström’s macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling. Leukemia. 2016;30(5):1116-1125. PubMed PMC
Treon SP, Xu L, Guerrera ML, et al. . Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J Clin Oncol. 2020;38(11):1198-1208. PubMed PMC
Treon SP, Meid K, Gustine J, et al. Long-term follow-up of previously treated patients who received ibrutinib for symptomatic Waldenstrom’s macroglobulinemia: update of pivotal clinical trial [abstract]. Blood. 2017;130(suppl 1). Abstract 2766.
Treon SP, Gustine J, Meid K, et al. . Ibrutinib monotherapy in symptomatic, treatment-naïve patients with Waldenström macroglobulinemia. J Clin Oncol. 2018;36(27):2755-2761. PubMed
Treon SP, Xu L, Hunter Z. MYD88 mutations and response to ibrutinib in Waldenström’s macroglobulinemia. N Engl J Med. 2015;373(6):584-586. PubMed
Dimopoulos MA, Trotman J, Tedeschi A, et al. ; iNNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia . Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241-250. PubMed
Owen RG, McCarthy H, Rule S, et al. . Acalabrutinib monotherapy in patients with Waldenström macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol. 2020;7(2):e112-e121. PubMed
Hunter ZR, Xu L, Tsakmaklis N, et al. . Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv. 2018;2(21):2937-2946. PubMed PMC
Dimopoulos MA, Tedeschi A, Trotman J, et al. ; iNNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia . Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N Engl J Med. 2018;378(25):2399-2410. PubMed
Paludo J, Abeykoon JP, Shreders A, et al. . Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenström macroglobulinemia. Ann Hematol. 2018;97(8):1417-1425. PubMed
Laribi K, Poulain S, Willems L, et al. . Bendamustine plus rituximab in newly-diagnosed Waldenström macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO). Br J Haematol. 2019;186(1):146-149. PubMed
Guo Y, Liu Y, Hu N, et al. . Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. J Med Chem. 2019;62(17):7923-7940. PubMed
Tam CSL, Trotman J, Opat S, et al. . Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood. 2019;134(11):851-859. PubMed PMC
Brukinsa: package insert. Beijing, China: BeiGene Co. Ltd; 2019.
Trotman J, Opat S, Gottlieb D, et al. . Zanubrutinib for the treatment of patients with Waldenström macroglobulinemia: 3 years of follow-up. Blood. 2020;136(18):2027-2037. PubMed PMC
Tam CS, Opat S, D’Sa S, et al. . A randomized phase 3 trial of zanubrutinib versus ibrutinib in symptomatic Waldenstrom macroglobulinemia: the ASPEN study. Blood. 2020;136(18):2038-2050. PubMed PMC
Dimopoulos MA, Kastritis E, Owen RG, et al. . Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood. 2014;124(9):1404-1411. PubMed PMC
MYD88 Mutation Analysis Fort Myers, FL: NeoGenomics; 2020. Available at: https://neogenomics.com/test-menu/myd88-mutation-analysis. Accessed 24 August 2020.
CXCR4 Mutation Analysis Fort Myers, FL: NeoGenomics; 2020. Available at: https://neogenomics.com/test-menu/cxcr4-mutation-analysis. Accessed 24 August 2020.
Albitar A, Ma W, DeDios I, Estella J, Agersborg S, Albitar M. Positive selection and high sensitivity test for MYD88 mutations using locked nucleic acid. Int J Lab Hematol. 2016;38(2):133-140. PubMed
Poulain S, Roumier C, Venet-Caillault A, et al. . Genomic landscape of CXCR4 mutations in Waldenström macroglobulinemia. Clin Cancer Res. 2016;22(6):1480-1488. PubMed
Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791-2796. PubMed
Owen RG, Kyle RA, Stone MJ, et al. ; VIth International Workshop on Waldenström macroglobulinaemia . Response assessment in Waldenström macroglobulinaemia: update from the VIth International Workshop. Br J Haematol. 2013;160(2):171-176. PubMed
Brookmeyer RCJ. A confidence interval for the median survival time. Biometrics. 1982;38(1):29-41.
Greenwood M. A report on the natural duration of cancer. In: Reports on Public Health and Medical Subjects. London, England: His Majesty’s Stationery Service; 1926:26.
Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019-5032. PubMed PMC
Owen RG, Treon SP, Al-Katib A, et al. . Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30(2):110-115. PubMed
Morel P, Duhamel A, Gobbi P, et al. . International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009;113(18):4163-4170. PubMed
Abeykoon JP, Paludo J, King RL, et al. . MYD88 mutation status does not impact overall survival in Waldenström macroglobulinemia. Am J Hematol. 2018;93(2):187-194. PubMed
Treon SP, Gustine J, Xu L, et al. . MYD88 wild-type Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018;180(3):374-380. PubMed
Treon SP, Yang G, Hanzis C, et al. . Attainment of complete/very good partial response following rituximab-based therapy is an important determinant to progression-free survival, and is impacted by polymorphisms in FCGR3A in Waldenstrom macroglobulinaemia. Br J Haematol. 2011;154(2):223-228. PubMed
Treon SP, Xu L, Yang G, et al. . MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367(9):826-833. PubMed
Yang G, Zhou Y, Liu X, et al. . A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013;122(7):1222-1232. PubMed