Tadpoles of hybridising fire-bellied toads (B. bombina and B. variegata) differ in their susceptibility to predation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33285552
PubMed Central
PMC7721483
DOI
10.1371/journal.pone.0231804
PII: PONE-D-20-09047
Knihovny.cz E-zdroje
- MeSH
- chování zvířat MeSH
- druhová specificita MeSH
- ekosystém MeSH
- fylogeneze MeSH
- fyziologická adaptace fyziologie MeSH
- hybridizace genetická MeSH
- larva genetika metabolismus MeSH
- predátorské chování fyziologie MeSH
- selekce (genetika) MeSH
- tok genů genetika MeSH
- úniková reakce fyziologie MeSH
- žáby embryologie genetika metabolismus MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of adaptive divergence in the formation of new species has been the subject of much recent debate. The most direct evidence comes from traits that can be shown to have diverged under natural selection and that now contribute to reproductive isolation. Here, we investigate differential adaptation of two fire-bellied toads (Anura, Bombinatoridae) to two types of aquatic habitat. Bombina bombina and B. variegata are two anciently diverged taxa that now reproduce in predator-rich ponds and ephemeral aquatic sites, respectively. Nevertheless, they hybridise extensively wherever their distribution ranges adjoin. We show in laboratory experiments that, as expected, B. variegata tadpoles are at relatively greater risk of predation from dragonfly larvae, even when they display a predator-induced phenotype. These tadpoles spent relatively more time swimming and so prompted more attacks from the visually hunting predators. We argue in the discussion that genomic regions linked to high activity in B. variegata should be barred from introgression into the B. bombina gene pool and thus contribute to gene flow barriers that keep the two taxa from merging into one.
Zobrazit více v PubMed
Hereford J. A quantitative survey of local adaptation and fitness trade-offs. Am Nat. 2009;173: 579–588. 10.1086/597611 PubMed DOI
Schluter D. Ecology and the origin of species. Trends Ecol Evol. 2001;16: 372–380. 10.1016/s0169-5347(01)02198-x PubMed DOI
Schluter D. Evidence for ecological speciation and its alternative. Science. 2009;323: 737–741. 10.1126/science.1160006 PubMed DOI
Hendry AP. Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci. 2009;66: 1383–1398.
Nosil P. Ecological Speciation Oxford: Oxford University Press; 2012.
Bierne N, Gagnaire P-A, David P. The geography of introgression in a patchy environment and the thorn in the thigh of ecological speciation. Curr Zool. 2013;59: 72–86.
Faria R, Renaut S, Galindo J, Pinho C, Melo-Ferreira J, Melo M, et al. Advances in ecological speciation: an integrative approach. Mol Ecol. 2014;23: 513–521. 10.1111/mec.12616 PubMed DOI
Filchak KE, Roethele JB, Feder JL. Natural selection and sympatric speciation in the apple maggot fly, PubMed DOI
Linn C, Feder JL, Nojima S, Dambroski HR, Berlocher SH, Roelofs W. Fruit odor discrimination and sympatric host race formation in PubMed DOI PMC
McGee MD, Schluter D, Wainwright PC. Functional basis of ecological divergence in sympatric stickleback. BMC Evol Biol. 2013;13: 277 10.1186/1471-2148-13-277 PubMed DOI PMC
Le Pennec G, Butlin RK, Jonsson PR, Larsson AI, Lindborg J, Bergström E, et al. Adaptation to dislodgement risk on wave-swept rocky shores in the snail PubMed DOI PMC
Johannesson B. Shell morphology of DOI
Schluter D. Adaptive Radiation in Sticklebacks: Trade-Offs in Feeding Performance and Growth. Ecology. 1995;76: 82–90. 10.2307/1940633 DOI
Janson K. Selection and migration in two distinct phenotypes of PubMed DOI
Linn CE, Dambroski HR, Feder JL, Berlocher SH, Nojima S, Roelofs WL. Postzygotic isolating factor in sympatric speciation in PubMed DOI PMC
Hatfield T, Schluter D. Ecological speciation in sticklebacks: environment-dependent hybrid fitness. Evolution. 1999;53: 866–873. 10.1111/j.1558-5646.1999.tb05380.x PubMed DOI
Feder JL, Opp SB, Wlazlo B, Reynolds K, Go W, Spisak S. Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proc Natl Acad Sci USA. 1994;91: 7990–7994. 10.1073/pnas.91.17.7990 PubMed DOI PMC
Rundle HD, Nagel L, Boughman JW, Schluter D. Natural selection and parallel speciation in sympatic sticklebacks. Science. 2000;287: 306–308. 10.1126/science.287.5451.306 PubMed DOI
Bay RA, Arnegard ME, Conte GL, Best J, Bedford NL, McCann SR, et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates Stickleback speciation. Curr Biol. 2017;27: 3344–3349.e4. 10.1016/j.cub.2017.09.037 PubMed DOI PMC
Feder JL, Roethele JB, Filchak KE, Niedbalski J, Romero-Severson J. Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, PubMed PMC
Meyers PJ, Doellman MM, Ragland GJ, Hood GR, Egan SP, Powell THQ, et al. Can the genomics of ecological speciation be predicted across the divergence continuum from host races to species? A case study in PubMed DOI PMC
Szymura JM. Analysis of hybrid zones with
Nürnberger B, Baird SJE, Čížková D, Bryjová A, Mudd AB, Blaxter ML, et al. A dense linkage map for a large repetitive genome: discovery of the sex-determining region in hybridising fire-bellied toads ( PubMed DOI PMC
Yanchukov A, Hofman S, Szymura JM, Mezhzherin S, Morozov-Leonov SY, Barton NH, et al. Hybridization of PubMed
Barton NH, Gale KS. Genetic analysis of hybrid zones In: Harrison RG, editor. Hybrid zones and the evolutionary process. Oxford: Oxford University Press; 1993. pp. 13–45.
Szymura JM, Barton NH. The genetic structure of the hybrid zone between the fire-bellied toads PubMed DOI
Kruuk LEB, Gilchrist JS, Barton NH. Hybrid dysfunction in Fire-Bellied Toads ( PubMed DOI
Philippi D, Gollmann G. On the status of the fire-bellied toad,
Gollmann B, Gollmann G. Die Gelbbauchunke: von der Suhle zur Radspur Bielefeld: Laurenti Verlag; 2002.
Nürnberger B, Barton NH, MacCallum C, Gilchrist J, Appleby M. Natural selection on quantitative traits in the PubMed DOI
Czopkowa G, Czopek J. The vascularization of the respiratory surfaces in
Hartel T. Movement activity in a
Kovar R, Brabec M, Vita R, Bocek R. Spring migration distances of some Central European amphibian species. Amphib-Reptil. 2009;30: 367–378.
Boulenger GA. On two European species of
Lörcher K. Vergleichende bioakustische Untersuchungen an der Rot- und Gelbbauchunke, PubMed DOI
Rafińska A. Reproductive biology of the fire-bellied toads,
Kruuk LEB, Gilchrist JS. Mechanisms maintaining species differentiation: predator mediated selection in a
Reichwaldt E. Der Einfluss von Prädatoren auf die Kaulquappen hybridisierender Unken (
Babbitt KJ, Baber MJ, Tarr TL. Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can J Zool. 2003;81: 1539–1552.
Richter-Boix A, Llorente GA, Montori A. A comparative study of predator-induced phenotype in tadpoles across a pond permanency gradient. Hydrobiologia. 2007;583: 43–56. 10.1007/s10750-006-0475-7 DOI
Werner EE, Skelly DK, Relyea RA, Yurewicz KL. Amphibian species richness across environmental gradients. Oikos. 2007;116: 1697–1712.
Woodward BD. Predator-prey interactions and breeding pond use of temporary pond species in a desert anuran community. Ecology. 1983;64: 1549–1555.
Smith DC, Van Buskirk J. Phenotyic design, plasticity, and ecological performance in two tadpole species. Am Nat. 1995;145: 211–233.
Relyea RA. Morphological and behavioural plasticity of larval anurans in response to different predators. Ecology. 2001;82: 523–540.
Lawler SP. Behavioural responses to predators and predation risk in four species of larval anurans. Anim Behav. 1989;38: 1039–1047.
Morin PJ. Predation, competition, and the composition of larval anuran guilds. Ecol Monogr. 1983;53: 119–138.
Azevedo-Ramos C, Van Sluys M, Hero J-M, Magnusson WE. Influence of tadpole movement on predation by odonate naiads. J Herpetol. 1992;26: 335–338.
Chovanec A. The influence of tadpole swimming behaviour on predation by dragonfly nymphs. Amphib-Reptil. 1992;13: 341–349.
Relyea RA. The Relationship between predation risk and antipredator responses in larval Anurans. Ecology. 2001;82: 541–554.
Dayton GH, Saenz D, Baum KA, Langerhans RB, DeWitt TJ, Lindström J. Body shape, burst speed and escape behavior of larval Anurans. Oikos. 2005;111: 582–591.
Werner EE, Anholt BR. Ecological consequences of the trade-off between growth and mortality-rates mediated by foraging activity. Am Nat. 1993;142: 242–272. 10.1086/285537 PubMed DOI
Cressler CE, King AA, Werner EE. Interactions between behavioral and life‐history trade‐offs in the evolution of integrated predator‐defense plasticity. Am Nat. 2010;176: 276–288. 10.1086/655425 PubMed DOI
Richardson JML. The relative roles of adaptation and phylogeny in determination of larval traits in diversifying Anuran lineages. Am Nat. 2001;157: 282–299. 10.1086/319196 PubMed DOI
Skelly DK, Werner EE. Behavioral and life-history responses of larval American toads to an odonate predator. Ecology. 1990;71: 2313–2322.
McCollum SA, Van Buskirk J. Costs and benefits of a predator-induced polymorphism in the gray treefrog PubMed DOI
Laurila A, Kujasalo J, Ranta E. Predator induced changes in life history in two anuran tadpoles: effects of predators on diet. Oikos. 1998;83: 307–317.
Relyea RA, Werner EE. Quantifying the relation between predator-induced behavior and growth performance in larval anurans. Ecology. 1999;80: 2117–2124.
Steiner UK. Linking antipredator behaviour, ingestion, gut evacuation and costs of predator-induced responses in tadpoles. Anim Behav. 2007;74: 1473–1479. 10.1016/j.anbehav.2007.02.016 DOI
Orizaola G, Richter‐Boix A, Laurila A. Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses. Ecology. 2016;97: 2470–2478. 10.1002/ecy.1464 PubMed DOI
Lima SC, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 1991;268: 619–640.
Anholt BR, Werner E, Skelly DK. Effect of food and predators on the activity of four larval ranid frogs. Ecology. 2000;81: 3509–3521. 10.1890/0012-9658(2000)081[3509:EOFAPO]2.0.CO;2 DOI
Van Buskirk J. A comparative test of the adaptive plasticity hypothesis: Relationships between habitat and phenotype in Anuran larvae. Am Nat. 2002;160: 87–102. 10.1086/340599 PubMed DOI
Dijk B, Laurila A, Orizaola G, Johansson F. Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behav Ecol Sociobiol. 2016;70: 237–246. 10.1007/s00265-015-2040-8 DOI
Teplitsky C, Plénet S, Joly P. Tadpoles’ responses to risk of fish introduction. Oecologia. 2003;134: 270–277. 10.1007/s00442-002-1106-2 PubMed DOI
Kurali A, Pásztor K, Hettyey A, Tóth Z. Resource-dependent temporal changes in antipredator behavior of common toad ( DOI
McCollum SA, Leimberger JD. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color. Oecologia. 1996;109: 615–621. PubMed
Touchon JC, Warkentin KM. Fish and dragonfly nymph predators induce opposite shifts in color and morphology of tadpoles. Oikos. 2008;117: 634–640. 10.1111/j.0030-1299.2008.16354.x DOI
Van Buskirk J. The costs of an inducible defense in anuran larvae. Ecology. 2000;81: 2813–2821.
Relyea RA. Getting out alive: how predators affect the decision to metamorphose. Oecologia. 2007;152: 389–400. 10.1007/s00442-007-0675-5 PubMed DOI
Van Buskirk J. Natural variation in morphology of larval Amphibians: Phenotypic plasticity in nature? Ecol Monogr. 2009;79: 681–705.
Michel MJ. Spatial dependence of phenotype-environment associations for tadpoles in natural ponds. Evol Ecol. 2011;25: 915–932. 10.1007/s10682-010-9441-y DOI
Arendt J. Morphological correlates of sprint swimming speed in five species of spadefoot toad tadpoles: Comparison of morphometric methods. J Morphol. 2010;271: 1044–1052. 10.1002/jmor.10851 PubMed DOI
Van Buskirk J, Anderwald P, Lüpold S, Reinhardt L, Schuler H. The lure effect, tadpole tail shape, and the target of dragonfly strikes. J Herpetol. 2003;37: 420–424.
Johnson JB, Burt DB, DeWitt TJ. Form, function, and fitness: Pathways to survival. Evolution. 2008;62: 1243–1251. 10.1111/j.1558-5646.2008.00343.x PubMed DOI
Van Buskirk J, McCollum SA. Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. J Evol Biol. 2001;13: 336–347. 10.1046/j.1420-9101.2000.00173.x DOI
Teplitsky C, Plenet S, Léna J-P, Mermet N, Malet E, Joly P. Escape behaviour and ultimate causes of specific induced defences in an anuran tadpole. J Evol Biol. 2005;18: 180–190. 10.1111/j.1420-9101.2004.00790.x PubMed DOI
Kraft PG, Wilson RS, Franklin CE, Blows MW. Substantial changes in the genetic basis of tadpole morphology of PubMed DOI
Innes-Gold AA, Zuczek NY, Touchon JC. Right phenotype, wrong place: predator-induced plasticity is costly in a mismatched environment. Proc R Soc B Biol Sci. 2019;286: 20192347 10.1098/rspb.2019.2347 PubMed DOI PMC
Van Buskirk J, McCollum SA, Werner EE. Natural selection for environmentally induced phenotypes in tadpoles. Evolution. 1997;51: 1981–1990. 10.1111/j.1558-5646.1997.tb05119.x PubMed DOI
Van Buskirk J, Relyea RA. Selection for phenotypic plasticity in DOI
Van Buskirk J. Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae. Evolution. 2017;71: 1670–1685. 10.1111/evo.13236 PubMed DOI
Vorndran IC, Reichwaldt E, Nürnberger B. Does differential susceptibility to predation in tadpoles stabilize the
Fijarczyk A, Nadachowska K, Hofman S, Litvinchuk SN, Babik W, Stuglik M, et al. Nuclear and mitochondrial phylogeography of the European fire-bellied toads PubMed DOI
Baláž V, Vojar J, Civiš P, Šandera M, Rozínek R. Chytridiomycosis risk among Central European amphibians based on surveillance data. Dis Aquat Organ. 2014;112: 1–8. 10.3354/dao02799 PubMed DOI
Blooi M, Pasmans F, Longcore JE, Spitzen-van der Sluijs A, Vercammen F, Martel A. Duplex real-time PCR for rapid simultaneous detection of PubMed DOI PMC
Werner EE, McPeek MA. Direct and indirect effects of predators on two Anuran species along an environmental gradient. Ecology. 1994;75: 1368–1382. 10.2307/1937461 DOI
Bradley R, Terry M. Rank analysis of incomplete block designs. I. The method of paired comparisons. Biometrika. 1952;39: 324–345.
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using DOI
Winter B. Linear models and linear mixed effect models in R with linguistic applications. 2013. Available: https://arxiv.org/abs/1308.5499
McCoy MW, Bolker BM, Osenberg CW, Miner BG, Vonesh JR. Size correction: comparing morphological traits among populations and environments. Oecologia. 2006;148: 547–554. 10.1007/s00442-006-0403-6 PubMed DOI
R Core Team. R: A language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing; 2018. Available: https://www.R-project.org/
Gosner KL. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 1960;16: 183–190.
Fischer N. Performance of pure, natural hybrid and F1
Eklöv P, Werner EE. Multiple predator effects on size-dependent behavior and mortality of two species of Anuran larvae. Oikos. 2000;88: 250–258.
Melvin SD, Houlahan JE. Tadpole mortality varies across experimental venues: do laboratory populations predict responses in nature? Oecologia. 2012;169: 861–868. 10.1007/s00442-012-2260-9 PubMed DOI
Van Buskirk J. Habitat partitioning in European and North American pond-breeding frogs and toads. Divers Distrib. 2003;9: 399–410. 10.1046/j.1472-4642.2003.00038.x DOI
Barton NH. Multilocus clines. Evolution. 1983;37: 454–471. 10.1111/j.1558-5646.1983.tb05563.x PubMed DOI
Barton NH, Bengtsson B-O. The barrier to genetic exchange between hybridising populations. Heredity. 1986;56: 357–376. 10.1038/hdy.1986.135 PubMed DOI
Sachdeva H, Barton NH. Introgression of a block of genome under infinitesimal selection. Genetics. 2018;209: 1279–1303. 10.1534/genetics.118.301018 PubMed DOI PMC
Arnegard ME, McGee MD, Matthews B, Marchinko KB, Conte GL, Kabir S, et al. Genetics of ecological divergence during speciation. Nature. 2014;511: 307–311. 10.1038/nature13301 PubMed DOI PMC
Rice WR, Hostert EE. Laboratory experiments on speciation: what have we learned in 40 years? Evolution. 1993;47: 1637–1653. 10.1111/j.1558-5646.1993.tb01257.x PubMed DOI
Nosil P, Harmon LJ, Seehausen O. Ecological explanations for (incomplete) speciation. Trends Ecol Evol. 2009;24: 145–156. 10.1016/j.tree.2008.10.011 PubMed DOI
Anholt BR, Werner EE. Interaction between food availability and predation mortality mediated by adaptive behavior. Ecology. 1995;76: 2230–2234.
Touchon JC, Robertson JM. You cannot have it all: Heritability and constraints of predator-induced developmental plasticity in a Neotropical treefrog. Evolution. 2018;72: 2758–2772. 10.1111/evo.13632 PubMed DOI
Barandun J, Reyer H-U. Reproductive Ecology of DOI
Köhler SC. Mechanisms of partial reproductive isolation in a
Hartel T, Nemes S, Mara G. Breeding phenology and spatio-temporal dynamics of pond use by the Yellow-Bellied Toad ( DOI
Newman RA. Effects of density and predation on PubMed DOI
Relyea RA. Competitor-induced plasticity in tadpoles: Consequences, cues, and connections to predator-induced plasticity. Ecol Monogr. 2002;72: 523–540. 10.1890/0012-9615(2002)072[0523:CIPITC]2.0.CO;2 DOI
Lemcke C. Verwandtenerkennung bei Kaulquappen der Gelbbauchunke,
Böll S. Ephemere Laichgewässer: Anpassungsstrategien und physiologische Zwänge der Gelbbauchunke (
Barandun J, Reyer H-U, Anholt B. Reproductive ecology of DOI
Hantzschmann AM, Gollmann B, Gollmann G, Sinsch U. The fast–slow continuum of longevity among yellow-bellied toad populations ( PubMed DOI PMC
Thiesmeier B. Fotoatlas der Amphibienlarven Deutschlands, Österreichs und der Schweiz Bielefeld: Laurenti Verlag; 2019.
Dryad
10.5061/dryad.zw3r2286w