Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant-Herbivore Interaction
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-10280S
Grantová Agentura České Republiky
RVO 67985939
Akademie Věd České Republiky
MZE RO0418
Ministerstvo Zemědělství
PubMed
33291794
PubMed Central
PMC7762045
DOI
10.3390/insects11120865
PII: insects11120865
Knihovny.cz E-resources
- Keywords
- Lepidoptera, cost of defense, folivory, knapweed, selection pressure, thistle, trait evolution, trichome,
- Publication type
- Journal Article MeSH
Data on plant herbivore damage as well as on herbivore performance have been previously used to identify key plant traits driving plant-herbivore interactions. The extent to which the two approaches lead to similar conclusions remains to be explored. We determined the effect of a free-living leaf-chewing generalist caterpillar, Spodoptera littoralis (Lepidoptera: Noctuidae), on leaf damage of 24 closely related plant species from the Carduoideae subfamily and the effect of these plant species on caterpillar growth. We used a wide range of physical defense leaf traits and leaf nutrient contents as the plant traits. Herbivore performance and leaf damage were affected by similar plant traits. Traits related to higher caterpillar mortality (higher leaf dissection, number, length and toughness of spines and lower trichome density) also led to higher leaf damage. This fits with the fact that each caterpillar was feeding on a single plant and, thus, had to consume more biomass of the less suitable plants to obtain the same amount of nutrients. The key plant traits driving plant-herbivore interactions identified based on data on herbivore performance largely corresponded to the traits identified as important based on data on leaf damage. This suggests that both types of data may be used to identify the key plant traits determining plant-herbivore interactions. It is, however, important to carefully distinguish whether the data on leaf damage were obtained in the field or in a controlled feeding experiment, as the patterns expected in the two environments may go in opposite directions.
Crop Research Institute 161 06 Prague Czech Republic
Department of Botany Faculty of Science Charles University 128 01 Prague Czech Republic
Institute of Botany Czech Academy of Sciences 252 43 Průhonice Czech Republic
See more in PubMed
Futuyma D., Mitter C. Insect-plant interactions: The evolution of component communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996;351:1361–1366.
Ehrlén J., Münzbergová Z. Timing of flowering: Opposed selection on different fitness components and trait covariation. Am. Nat. 2009;173:819–830. doi: 10.1086/598492. PubMed DOI
Arvanitis L., Wiklund C., Münzbergová Z., Dahlgren J.P., Ehrlen J. Novel antagonistic interactions associated with plant polyploidization influence trait selection and habitat preference. Ecol. Lett. 2010;13:330–337. doi: 10.1111/j.1461-0248.2009.01429.x. PubMed DOI
Erb M. Plant defenses against herbivory: Closing the fitness gap. Trends Plant Sci. 2018;23:187–194. doi: 10.1016/j.tplants.2017.11.005. PubMed DOI
Agrawal A.A. Plant defense and density dependence in the population growth of herbivores. Am. Nat. 2004;164:113–120. doi: 10.1086/420980. PubMed DOI
Travers-Martin N., Muller C. Matching plant defence syndromes with performance and preference of a specialist herbivore. Funct. Ecol. 2008;22:1033–1043. doi: 10.1111/j.1365-2435.2008.01487.x. DOI
Ruhnke H., Schadler M., Klotz S., Matthies D., Brandl R. Variability in leaf traits, insect herbivory and herbivore performance within and among individuals of four broad-leaved tree species. Basic Appl. Ecol. 2009;10:726–736. doi: 10.1016/j.baae.2009.06.006. DOI
Tomas F., Abbott J., Steinberg C., Balk M., Williams S., Stachowicz J. Plant genotype and nitrogen loading influence seagrass productivity, biochemistry, and plant-herbivore interactions. Ecology. 2011;92:1807–1817. doi: 10.1890/10-2095.1. PubMed DOI
Holeski L., Hillstrom M., Whitham T., Lindroth R. Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia. 2012;170:695–707. doi: 10.1007/s00442-012-2344-6. PubMed DOI
Whitfeld T.J.S., Novotny V., Miller S.E., Hrcek J., Klimes P., Weiblen G.D. Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology. 2012;93:S211–S222. doi: 10.1890/11-0503.1. DOI
Loranger J., Meyer S.T., Shipley B., Kattge J., Loranger H., Roscher C., Weisser W.W. Predicting invertebrate herbivory from plant traits: Evidence from 51 grassland species in experimental monocultures. Ecology. 2012;93:2674–2682. doi: 10.1890/12-0328.1. PubMed DOI
Agrawal A.A., Kearney E.E., Hastings A.P., Ramsey T.E. Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca) J. Chem. Ecol. 2012;38:893–901. doi: 10.1007/s10886-012-0145-3. PubMed DOI
Axelsson E.P., Hjalten J. Tolerance and growth responses of populus hybrids and their genetically modified varieties to simulated leaf damage and harvest. Forest Ecol. Manag. 2012;276:217–223. doi: 10.1016/j.foreco.2012.04.012. DOI
Mooney E.H., Niesenbaum R.A. Population-specific responses to light influence herbivory in the understory shrub Lindera benzoin. Ecology. 2012;93:2683–2692. doi: 10.1890/11-1620.1. PubMed DOI
Kempel A., Schadler M., Chrobock T., Fischer M., van Kleunen M. Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc. Natl. Acad. Sci. USA. 2011;108:5685–5689. doi: 10.1073/pnas.1016508108. PubMed DOI PMC
Schaffler I., Balao F., Dotterl S. Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species. Ann. Bot. 2012;110:125–138. doi: 10.1093/aob/mcs101. PubMed DOI PMC
Weber M.G., Keeler K.H. The phylogenetic distribution of extrafloral nectaries in plants. Ann. Bot. 2013;111:1251–1261. doi: 10.1093/aob/mcs225. PubMed DOI PMC
Becerra J.X. Synchronous coadaptation in an ancient case of herbivory. Proc. Natl. Acad. Sci. USA. 2012;100:12804–12807. doi: 10.1073/pnas.2133013100. PubMed DOI PMC
Agrawal A.A., Fishbein M., Halitschke R., Hastings A.P., Rabosky D.L., Rasmann S. Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proc. Natl. Acad. Sci. USA. 2009;106:18067–18072. doi: 10.1073/pnas.0904862106. PubMed DOI PMC
Agrawal A.A. Current trends in the evolutionary ecology of plant defence. Funct. Ecol. 2011;25:420–432. doi: 10.1111/j.1365-2435.2010.01796.x. DOI
Kirk H., Vrieling K., Pelser P., Schaffner U. Can plant resistance to specialist herbivores be explained by plant chemistry or resource use strategy? Oecologia. 2012;168:1043–1055. doi: 10.1007/s00442-011-2179-6. PubMed DOI
Weber M.G., Agrawal A.A. Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol. Evol. 2012;27:394–403. doi: 10.1016/j.tree.2012.04.010. PubMed DOI
Weber M.G., Clement W.L., Donoghue M.J., Agrawal A.A. Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (Adoxaceae) Am. Nat. 2012;180:450–463. doi: 10.1086/667584. PubMed DOI
Münzbergová Z., Skuhrovec J. Effect of habitat conditions and plant traits on leaf damage in the Carduoideae subfamily. PLoS ONE. 2013;8:e64639. doi: 10.1371/journal.pone.0064639. PubMed DOI PMC
Kuglerová M., Skuhrovec J., Münzbergová Z. Relative importance of drought, soil quality, and plant species in determining the strength of plant–herbivore interactions. Ecol. Entomol. 2019;44:665–677. doi: 10.1111/een.12745. DOI
Redfern M. Insects and Thistles. Naturalists’ Handbooks 4. The Richmond Publishing Co. Ltd.; Slough, UK: 1995.
Münzbergová Z. Determinants of species rarity: Population growth rates of species sharing the same habitat. Am. J. Bot. 2005;92:1987–1994. doi: 10.3732/ajb.92.12.1987. PubMed DOI
Patočka J., Kulfan J. Lepidoptera of Slovakia (Bionomics and Ecology) Veda; Bratislava, Slovakia: 2009.
Abela-Hofbauerová I., Münzbergová Z., Skuhrovec J. The effect of different natural enemies on the performance of Cirsium arvense in its native range. Weed Res. 2011;51:394–403. doi: 10.1111/j.1365-3180.2011.00851.x. DOI
Louda S.M., Potvin M.A. Effect of inflorescence-feeding insects on the demography and lifetime fitness of a native plant. Ecology. 1995;76:229–245. doi: 10.2307/1940645. DOI
Eckberg J.O., Tenhumberg B., Louda S.M. Insect herbivory and propagule pressure influence Cirsium vulgare invasiveness across the landscape. Ecology. 2012;93:1787–1794. doi: 10.1890/11-1583.1. PubMed DOI
Van Zandt P.A. Plant defense, growth, and habitat: A comparative assessment of constitutive and induced resistance. Ecology. 2007;88:1984–1993. doi: 10.1890/06-1329.1. PubMed DOI
Borzak C.L., Potts B.M., Davies N.W., O’Reilly-Wapstra J.M. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species. Ann. Bot. 2016;115:159–170. doi: 10.1093/aob/mcu222. PubMed DOI PMC
Hanley M.E., Shannon R.W.R., Lemoine D.G., Sandey B., Newland P.L., Poppy G.M. Riding on the wind: Volatile compounds dictate selection of grassland seedlings by snails. Ann. Bot. 2018;122:1075–1083. doi: 10.1093/aob/mcy190. PubMed DOI PMC
Carmona D., Lajeunesse M.J., Johnson M.T.J. Plant traits that predict resistance to herbivores. Funct. Ecol. 2011;25:358–367. doi: 10.1111/j.1365-2435.2010.01794.x. DOI
Münzbergová Z., Skuhrovec J., Maršík P. Large differences in the composition of herbivore communities and seed damage in diploid and autotetraploid plant species. Biol. J. Linn. Soc. 2015;115:270–287. doi: 10.1111/bij.12482. DOI
Münzbergová Z., Skuhrovec J. Contrasting effects of ploidy level on seed production in a diploid-tetraploid system. AoB Plants. 2017;9:plw077. doi: 10.1093/aobpla/plw077. PubMed DOI PMC
Brown E., Dewhurst C. Genus Spodoptera (Lepidoptera, Noctuidae) in Africa and Near East. Bull. Entomol. Res. 1975;65:221–262. doi: 10.1017/S0007485300005939. DOI
Dostálek T., Rokaya M.B., Maršík P., Rezek J., Skuhrovec J., Pavela R., Münzbergová Z. Trade-off among different anti-herbivore defence strategies along an altitudinal gradient. AoB Plants. 2016;8:plw026. doi: 10.1093/aobpla/plw026. PubMed DOI PMC
Macel M., Dostálek T., Esch S., Bucharová A., van Dam N.M., Tielboerger K., Verhoeven K.J.F., Münzbergová Z. Evolutionary responses to climate change in a range expanding plant. Oecologia. 2017;184:543–554. doi: 10.1007/s00442-017-3864-x. PubMed DOI PMC
Hanley M.E., Lamont B.B., Fairbanks M.M., Rafferty C.M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. Evol. Syst. 2007;8:157–178. doi: 10.1016/j.ppees.2007.01.001. DOI
Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil. 1998;199:213–227. doi: 10.1023/A:1004327224729. DOI
Scriber J.M., Slansky F. The nutritional ecology of immature insects. Annu. Rev. Entomol. 1981;26:183–211. doi: 10.1146/annurev.en.26.010181.001151. DOI
Fei M.H., Gols R., Zhu F., Harvey J.A. Plant quantity affects development and survival of a gregarious insect herbivore and its endoparasitoid wasp. PLoS ONE. 2016;11:e0149539. doi: 10.1371/journal.pone.0149539. PubMed DOI PMC
Arsuffi T., Suberkropp K. Leaf processing capabilities of aquatic hyphomycetes—Interspecific differences and influence on shredder feeding preference. Oikos. 1984;42:144–154. doi: 10.2307/3544786. DOI
Graça M., Zimmer M. Chapter 18 Leaf toughness. In: Graça M., Bärlocher F., Gessner M., editors. Methods to Study Litter Decomposition. Springer; Dodrecht, The Netherlands: 2005. pp. 121–126.
Dirzo R. Experimental studies on slug-plant interactions. 1. The acceptability of 30 plant species to the slug Agriolimax caruanae. J. Ecol. 1980;68:981–998. doi: 10.2307/2259470. DOI
Coley P.D. Interspecific variation in plant anti-herbivore properties—The role of habitat quality and rate of disturbance. New Phytol. 1987;106:251–263. doi: 10.1111/j.1469-8137.1987.tb04693.x. DOI
Knappová J., Židlická D., Kadlec T., Knapp M., Haisel D., Hadincová V., Münzbergová Z. Population differentiation related to climate of origin affects the intensity of plant-herbivore interactions in a clonal grass. Basic Appl. Ecol. 2018;28:76–86. doi: 10.1016/j.baae.2018.02.011. DOI
Gowda J. Spines of Acacia tortilis: What do they defend and how? Oikos. 1996;77:279–284. doi: 10.2307/3546066. DOI
Gomez J., Zamora R. Spatial variation in the selective scenarios of Hormathophylla spinosa (Cruciferae) Am. Nat. 2000;155:657–668. doi: 10.1086/303353. PubMed DOI
Young T., Stanton M., Christian C. Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos. 2003;101:171–179. doi: 10.1034/j.1600-0706.2003.12067.x. DOI
Mauricio R. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am. Nat. 1998;151:20–28. doi: 10.1086/286099. PubMed DOI
Werker E. Trichome diversity and development. Adv. Bot. Res. 2000;31:1–35.
Dalin P., Ågren J., Björkman C., Huttunen P., Kärkkäinen K. Leaf trichome formation and plant resistance to herbivory. In: Schaller A., editor. Induced Plant Resistance to Herbivory. Springer; Dordrecht, The Netherlands: 2008. pp. 89–105.
Kobayashi S., Asai T., Fujimoto Y., Kohshima S. Anti-herbivore structures of Paulownia tomentosa: Morphology, distribution, chemical constituents and changes during shoot and leaf development. Ann. Bot. 2008;101:1035–1047. doi: 10.1093/aob/mcn033. PubMed DOI PMC
Kariyat R.R., Smith J.D., Stephenson A.G., De Moraes C.M., Mescher M.C. Non- glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proc. Royal Soc. B Biol. Sci. 2017;284:9. doi: 10.1098/rspb.2016.2323. PubMed DOI PMC
Campo J., Dirzo R. Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatan, Mexico. J. Trop. Ecol. 2003;19:525–530. doi: 10.1017/S0266467403003572. DOI
Santiago L., Wright S., Harms K., Yavitt J., Korine C., Garcia M., Turner B. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. J. Ecol. 2012;100:309–316. doi: 10.1111/j.1365-2745.2011.01904.x. DOI
Schadler M., Roeder M., Brandl R., Matthies D. Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob. Chang. Biol. 2007;13:1005–1015. doi: 10.1111/j.1365-2486.2007.01319.x. DOI
Ter Braak C., Šmilauer P. Canoco Reference Manual and Users Guide to Canoco forWindows: Software for Canonical Community Ordination (Version 4) Microcomputer Power; Ithaca, NY, USA: 1998.
Defossez E., Pellissier L., Rasmann S. The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol. Lett. 2018;21:609–618. doi: 10.1111/ele.12926. PubMed DOI
Kergunteuil A., Humair L., Münzbergová Z., Rasmann S. Plant adaptation to different climates shapes the strengths of chemically-mediated tritrophic interactions. Funct. Ecol. 2019;33:1893–1903. doi: 10.1111/1365-2435.13396. DOI
R Development Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2011.
Crawley M. The R Book. 2nd ed. John Wiley & Sons; Chichester, UK: 2012.
Garcia L.V. Escaping the Bonferroni iron claw in ecological studies. Oikos. 2004;105:657–663. doi: 10.1111/j.0030-1299.2004.13046.x. DOI
Münzbergová Z., Šurinová M. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback. Ecosphere. 2015;6:1–16. doi: 10.1890/ES15-00206.1. DOI
Diniz J.A.F., De Sant’ana C.E.R., Bini L.M. An eigenvector method for estimating phylogenetic inertia. Evolution. 1998;52:1247–1262. doi: 10.1111/j.1558-5646.1998.tb02006.x. PubMed DOI
Desdevises Y., Legendre P., Azouzi L., Morand S. Quantifying phylogenetically structured environmental variation. Evolution. 2003;57:2647–2652. doi: 10.1111/j.0014-3820.2003.tb01508.x. PubMed DOI
Paradis E., Claude J., Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Alves-Silva E., Del-Claro K. Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol. Evol. 2016;149:73–80. doi: 10.5091/plecevo.2016.1093. DOI
Kozlov M.V., Gavrikov D.E., Zverev V., Zvereva E.L. Local insect damage reduces fluctuating asymmetry in next-year’s leaves of downy birch. Insects. 2018;9:56. doi: 10.3390/insects9020056. PubMed DOI PMC
Nicotra A., Leigh A., Boyce C., Jones C., Niklas K., Royer D., Tsukaya H. The evolution and functional significance of leaf shape in the angiosperms. Funct. Plant Biol. 2011;38:535–552. doi: 10.1071/FP11057. PubMed DOI
Coley P., Bateman M., Kursar T. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos. 2006;115:219–228. doi: 10.1111/j.2006.0030-1299.14928.x. DOI
Gotthard K. Adaptive growth decisions in butterflies. Bioscience. 2008;58:222–230. doi: 10.1641/B580308. DOI
Yamazaki K., Lev-Yadun S. Dense white trichome production by plants as possible mimicry of arthropod silk or fungal hyphae that deter herbivory. J. Theor. Biol. 2015;364:1–6. doi: 10.1016/j.jtbi.2014.08.045. PubMed DOI
Moya-Raygoza G. Early development of leaf trichomes is associated with decreased damage in teosinte, compared with maize, by Spodoptera frugiperda (Lepidoptera: Noctuidae) Ann. Entomol. Soc. Am. 2016;109:737–743. doi: 10.1093/aesa/saw049. DOI
Scalabrin E., Radaelli M., Rizzato G., Bogani P., Buiatti M., Gambaro A., Capodaglio G. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: Unraveling metabolic responses. Anal. Bioanal. Chem. 2015;407:6357–6368. doi: 10.1007/s00216-015-8770-7. PubMed DOI
Bickford C.P. Ecophysiology of leaf trichomes. Funct. Plant Biol. 2016;43:807–814. doi: 10.1071/FP16095. PubMed DOI
Mattson W.J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 1980;11:119–161. doi: 10.1146/annurev.es.11.110180.001003. DOI
Osier T.L., Hwang S.Y., Lindroth R.L. Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecol. Entomol. 2000;25:197–207. doi: 10.1046/j.1365-2311.2000.00245.x. DOI
Fortin M., Mauffette Y. The suitability of leaves from different canopy layers for a generalist herbivore (Lepidoptera: Lasiocampidae) foraging on sugar maple. Can. J. For. Res. 2002;32:379–389. doi: 10.1139/x01-205. DOI
Haukioja E. Plant defenses and population fluctuations of forest defoliators: Mechanism-based scenarios. Ann. Zool. Fenn. 2005;42:313–325.
Moe S.R., Gjorvad I.R., Eldegard K., Hegland S.J. Ungulate browsing affects subsequent insect feeding on a shared food plant, bilberry (Vaccinium myrtillus) Basic Appl. Ecol. 2018;31:44–51. doi: 10.1016/j.baae.2018.05.015. DOI
Haukioja E., Niemela P., Siren S. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation, in the mountain birch Betula pubescens ssp. tortuosa. Oecologia. 1985;65:214–222. doi: 10.1007/BF00379220. PubMed DOI
Schadler M., Jung G., Auge H., Brandl R. Palatability, decomposition and insect herbivory: Patterns in a successional old-field plant community. Oikos. 2003;103:121–132. doi: 10.1034/j.1600-0706.2003.12659.x. DOI
Bazely D., Myers J., Dasilva K. The response of numbers of bramble prickles to herbivory and depressed resource availability. Oikos. 1991;61:327–336. doi: 10.2307/3545240. DOI
Obeso J. The induction of spinescence in European holly leaves by browsing ungulates. Plant Ecol. 1997;129:149–156. doi: 10.1023/A:1009767931817. DOI
Honek A., Martinkova Z., Saska P., Koprdova S. Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants. Agric. Ecosyst. Environ. 2009;134:126–135. doi: 10.1016/j.agee.2009.06.001. DOI
Krebs C., Gerber E., Matthies D., Schaffner U. Herbivore resistance of invasive Fallopia species and their hybrids. Oecologia. 2011;167:1041–1052. doi: 10.1007/s00442-011-2035-8. PubMed DOI
Hendriks R., de Boer N., van Groenendael J. Comparing the preferences of three herbivore species with resistance traits of 15 perennial dicots: The effects of phylogenetic constraints. Plant Ecol. 1999;143:141–152. doi: 10.1023/A:1009832621516. DOI
Wagner D., Doak P. Oviposition, larval survival and leaf damage by the willow leaf blotch miner, Micrurapteryx salicifoliella, in relation to leaf trichomes across 10 Salix species. Ecol. Entomol. 2017;42:629–635. doi: 10.1111/een.12431. DOI
Ochoa-Lopez S., Villamil N., Zedillo-Avelleyra P., Boege K. Plant defence as a complex and changing phenotype throughout ontogeny. Ann. Bot. 2015;116:797–806. doi: 10.1093/aob/mcv113. PubMed DOI PMC
Saska P., Skuhrovec J., Tylová E., Platková H., Tuan S.-J., Hsu Y.-T., Vítámvás P. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest Sci. 2020 doi: 10.1007/s10340-020-01253-3. DOI
Fordyce J.A., Agrawal A.A. The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor. J. Anim. Ecol. 2001;70:997–1005. doi: 10.1046/j.0021-8790.2001.00568.x. DOI
Gassmann A.J., Hare J.D. Indirect cost of a defensive trait: Variation in trichome type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia. 2005;144:62–71. doi: 10.1007/s00442-005-0038-z. PubMed DOI
Andama J.B., Mujiono K., Hojo Y., Shinya T., Galis I. Non-glandular silicified trichomes are essential for rice defense against chewing herbivores. Plant Cell Environ. 2020:pce.13775. doi: 10.1111/pce.13775. PubMed DOI
Hall C.R., Dagg V., Waterman J.M., Johnson S.N. Silicon alters leaf surface morphology and suppresses insect herbivory in a model grass species. Plants. 2020;9:643. doi: 10.3390/plants9050643. PubMed DOI PMC
Ibanez S., Arene F., Lavergne S. How phylogeny shapes the taxonomic and functional structure of plant-insect networks. Oecologia. 2016;180:989–1000. doi: 10.1007/s00442-016-3552-2. PubMed DOI
Senior J.K., Potts B.M., Davies N.W., Wooliver R.C., Schweitzer J.A., Bailey J.K., O’Reilly-Wapstra J.M. Phylogeny explains variation in the root chemistry of Eucalyptus species. J. Chem. Ecol. 2016;42:1086–1097. doi: 10.1007/s10886-016-0750-7. PubMed DOI
Wigley B.J., Slingsby J.A., Diaz S., Bond W.J., Fritz H., Coetsee C. Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. J. Ecol. 2016;104:1357–1369. doi: 10.1111/1365-2745.12598. DOI
Ehrenberger F., Gorbach S. Methoden der Organischen Elementar- und Purenanalyse. Verlag Chemie; Weinheim, Germany: 1973.
Olsen R., Cole C., Watanabe F., Dean L. Estimation of available phosphorus in soils by extraction with podium bicarbonate. US Dep. Agric. Circ. 1954;939:1–19.