Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses
Status PubMed-not-MEDLINE Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33318878
PubMed Central
PMC7728587
DOI
10.1016/j.jare.2020.09.005
PII: S2090-1232(20)30216-2
Knihovny.cz E-zdroje
- Klíčová slova
- Hydrogen sulfide, L-cysteine, L-cysteine desulfhydrase, Plant defence, Plant signalling, Sulfur metabolism,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Sulfur and diverse sulfur-containing compounds constitute important components of plant defences against a wide array of microbial pathogens. Among them, hydrogen sulfide (H2S) occupies a prominent position as a gaseous signalling molecule that plays multiple roles in regulation of plant growth, development and plant responses to stress conditions. Although the production of H2S in plant cells has been discovered several decades ago, the underlying pathways of H2S biosynthesis, metabolism and signalling were only recently uncovered. AIM OF THE REVIEW: Here we review the current knowledge on the biosynthesis of H2S in plant cells, with special attention to L-cysteine desulfhydrase (DES) as the key enzyme controlling H2S levels biosynthesis in the cytosol of plant cells during plant growth, development and diverse abiotic and biotic stress conditions. KEY SCIENTIFIC CONCEPTS OF REVIEW: Recent advances have revealed molecular mechanisms of DES properties, functions and regulation involved in modulations of H2S production during plant responses to abiotic and biotic stress stimuli. Studies on des mutants of the model plant Arabidopsis thaliana uncovered molecular mechanisms of H2S action as a signalling and defence molecule in plant-pathogen interactions. Signalling pathways of H2S include S-persulfidation of protein cysteines, a redox-based post-translational modification leading to activation of downstream components of H2S signalling. Accumulated evidence shows DES and H2S implementation into salicylic acid signalling and activation of pathogenesis-related proteins and autophagy within plant immunity. Obtained knowledge on molecular mechanisms of H2S action in plant defence responses opens new prospects in the search for crop varieties with increased resistance to bacterial and fungal pathogens.
Zobrazit více v PubMed
Li Q., Lancaster J.R., Jr. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 2013;35:21–34. PubMed PMC
Kabil O., Vitvitsky V., Banerjee R. Sulfur as a signaling nutrient through hydrogen sulfide. Annu Rev Nutr. 2014;34:171–205. PubMed PMC
Bian J.S., Olson K.R., Zhu Y.C. Hydrogen Sulfide: Biogenesis, Physiology, and Pathology. Oxid Med Cell Longev. 2016;2016:6549625. PubMed PMC
Wilson L.G., Bressan R.A., Filner P. Light-dependent emission of hydrogen sulfide from plants. Plant Physiol. 1978;61:184–189. PubMed PMC
García-Mata C., Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol. 2010;188:977–984. PubMed
García-Mata C., Lamattina L. Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Sci. 2013;201–202:66–73. PubMed
Lisjak M., Teklic T., Wilson I.D., Whiteman M., Hancock J.T. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ. 2013;36:1607–1616. PubMed
Lin Y.T., Li M.Y., Cui W.T., Lu W., Shen W. Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. J Plant Growth Regul. 2012;2012(31):519–528.
Chen J., Wu F.H., Wang W.H., Zheng C.J., Lin G.H., Dong X.J. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot. 2011;62:4481–4493. PubMed PMC
Huo J., Huang D., Zhang J., Fang H., Wang B., Wang C. Hydrogen Sulfide: A Gaseous Molecule in Postharvest Freshness. Front Plant Sci. 2018;9:1172. PubMed PMC
Ziogas V., Molassiotis A., Fotopoulos V., Tanou G. Hydrogen Sulfide: A Potent Tool in Postharvest Fruit Biology and Possible Mechanism of Action. Front Plant Sci. 2018;9:1375. PubMed PMC
Guo H., Xiao T., Zhou H., Xie Y., Shen W. Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol Plant. 2016;38:16.
Hancock J.T. Hydrogen sulfide and environmental stresses. Environ Exp Bot. 2019;161:50–56.
Corpas F.J. Hydrogen Sulfide: A New Warrior against Abiotic Stress. Trends Plant Sci. 2019;24:983–988. PubMed
Fotopoulos V., Christou A., Manganaris G.A. Hydrogen sulfide as a potent regulator of plant responses to abiotic stress factors. In: Gaur R.K., Sharma P., editors. Molecular Approaches in Plant Abiotic Stress. CRC Press; Boca Raton: 2013. pp. 353–373.
Da-Silva C.J., Modolo L.V. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Bot Brasil. 2018;32:150–160.
Li J., Yu Z., Choo S., Zhao J., Wang Z., Xie R. Chemico-proteomics reveal the enhancement of salt tolerance in an invasive plant species via H2S signaling. ACS Omega. 2020;5:14575–14585. PubMed PMC
Li Z.G., Min X., Zhou Z.H. Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci. 2016;7:1621. PubMed PMC
Scuffi D., Lamattina L., García-Mata C. Gasotransmitters and Stomatal Closure: Is There Redundancy, Concerted Action, or Both? Front Plant Sci. 2016;7:277. PubMed PMC
Hancock J.T., Whiteman M. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann N Y Acad Sci. 2016;1365:5–14. PubMed
Hasanuzzaman M., Bhuyan M., Mahmud J.A., Nahar K., Mohsin S.M., Parvin K. Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signal Behav. 2018;13 PubMed PMC
Cortese-Krott M.M., Koning A., Kuhnle G.G.C., Nagy P., Bianco C.L., Pasch A. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal. 2017;27:684–712. PubMed PMC
Corpas F.J., González-Gordo S., Cañas A., Palma J.M. Nitric oxide and hydrogen sulfide in plants: which comes first? J Exp Bot. 2019;70:4391–4404. PubMed
Bhuyan M.H.M.B., Hasanuzzaman M., Parvin K., Mohsin S.M., Al Mahmud J., Nahar K. Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regul. 2020;90:409–424.
Xuan L., Li J., Wang X., Wang C. Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development. Int J Mol Sci. 2020;21:4593. PubMed PMC
Petřivalský M., Luhová L. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. Front Plant Sci. 2020;11:598. PubMed PMC
He H., Garcia-Mata C., He L.F. Interaction between hydrogen sulfide and hormones in plant physiological responses. Plant Growth Regul. 2019;87:175.
Hancock J.T., Whiteman M. Hydrogen sulfide and cell signalling: team player or referee? Plant Physiol Biochem. 2014;78:37–42. PubMed
Corpas F.J., Palma J.M. H2S signaling in plants and applications in agriculture. J Adv Res. 2020;24:131–137. PubMed PMC
Aroca A., Gotor C., Bassham D.C., Romero L.C. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020;9:621. PubMed PMC
Gotor C., Garcia I., Crespo J.L., Romero L.C. Sulfide as a signaling molecule in autophagy. Autophagy. 2013;9:609–611. PubMed PMC
Laureano-Marín A.M., Moreno I., Romero L.C., Gotor C. Negative Regulation of Autophagy by Sulfide Is Independent of Reactive Oxygen Species. Plant Physiol. 2016;171:1378–1391. PubMed PMC
Romero L.C., Aroca M.A., Laureano-Marin A.M., Morena I., García I., Gotor C. Cysteine and Cysteine-Related Signaling Pathways in Arabidopsis thaliana. Mol Plant. 2014;7:264–276. PubMed
Gotor C., Laureano-Marín A.M., Moreno I., Aroca A., García I., Romero L.C. Signaling in the plant cytosol: cysteine or sulfide? Amino Acids. 2015;47:2155. PubMed
Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plant. 2017;23:249–326. PubMed PMC
Yang J., Carroll K.S., Liebler D.C. The Expanding Landscape of the Thiol Redox Proteome. Mol Cell Proteom. 2016;15:1–11. PubMed PMC
Filipovic M.R., Zivanovic J., Alvarez B., Banerjee R. Chemical Biology of H2S Signaling through Persulfidation. Chem Rev. 2018;118:1253–1337. PubMed PMC
Couturier J., Chibani K., Jacquot J.P., Rouhier N. Cysteine-based redox regulation and signaling in plants. Front Plant Sci. 2013;4:1–7. PubMed PMC
Aroca A., Gotor C., Romero L.C. Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation. Front Plant Sci. 2018;9:1369. PubMed PMC
Rausch T., Wachter A. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 2005;10:503–509. PubMed
Bloem E., Haneklaus S., Schnug E. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Front Plant Sci. 2015;5:1–12. PubMed PMC
Alvarez C., Bermúdez M.A., Romero L.C., Gotor C., García I. Cysteine homeostasis plays an essential role in plant immunity. New Phytol. 2012;193:165–177. PubMed
Bloem E., Haneklaus S., Salac I., Wickenhauser P., Schnug E. Facts and fiction about sulfur metabolism in relation to plant-pathogen interactions. Plant Biol. 2007;9:596–607. PubMed
Calderwood A., Kopriva S. Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule. Nitric Oxide. 2014;41:72–78. PubMed
Hughes P., Dennis E., Whitecross M., Llewellyn D., Gage P. The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J Biol Chem. 2000;275:823–827. PubMed
Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial Peptides from Plants. Pharmaceuticals (Basel) 2015;8:711–757. PubMed PMC
Kuc J. Relevance of Phytoalexins – A Critical Review. Acta Horticult. 1994;381:526–539.
Zook M., Hammerschmidt R. Origin of the thiazole ring of camalexin, a phytoalexin from Arabidopsis thaliana. Plant Physiol. 1997;113:463–468. PubMed PMC
Bednarek P. Sulfur-Containing Secondary Metabolites from Arabidopsis thaliana and other Brassicaceae with Function in Plant Immunity. ChemBioChem. 2012;13:1846–1859. PubMed
Dufour V., Stahl M., Baysse C. The antibacterial properties of isothiocyanates. Microbiol. 2015;161:229–243. PubMed
Beffa T. Inhibitory action of elemental sulphur (S0)on fungal spores. Can J Microbiol. 1993;39:731–735.
Williams J.S., Hall S.A., Hawkesford M.J., Beale M.H., Cooper R.M. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol. 2002;128:150–159. PubMed PMC
Nwachukwu I.D., Slusarenko A.J., Gruhlke M.C. Sulfur and sulfur compounds in plant defence. Nat Prod Commun. 2012;7:395–400. PubMed
Wirtz M., Droux M., Hell R. O-acetylserine (thiol)lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot. 2004;55:1785–1798. PubMed
Wirtz M., Hell R. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol. 2006;163:273–296. PubMed
Takahashi H., Kopriva S., Giordano M., Saito K., Hell R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol. 2011;62:157–184. PubMed
Krueger S., Niehl A., Lopez-Martin M.C., Steinhauser D., Donath A., Hildebrandt T. Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant, Cell Environ. 2009;32:349–367. PubMed
Jacob C., Giles G.I., Giles N.M., Sies H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int. 2003;42:4742–4758. PubMed
Park S., Imlay J.A. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol. 2003;185:1942–1950. PubMed PMC
Lopez-Martin M.C., Becana M., Romero L.C., Gotor C. Knocking Out Cytosolic Cysteine Synthesis Compromises the Antioxidant Capacity of the Cytosol to Maintain Discrete Concentrations of Hydrogen Peroxide in Arabidopsis. Plant Physiol. 2008;147:562–572. PubMed PMC
Alvarez C., Calo L., Romero L.C., García I., Gotor C. An O-Acetylserine(thiol)lyase Homolog with L-Cysteine Desulfhydrase Activity Regulates Cysteine Homeostasis in Arabidopsis. Plant Physiol. 2010;152:656–669. PubMed PMC
Bermúdez M.A., Páez-Ochoa M.A., Gotor C., Romero L.C. Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. Plant Cell. 2010;22:403–416. PubMed PMC
Bermúdez M.A., Galméz J., Moreno I., Mullineaux P.M., Gotor C., Romero L.C. Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen. Plant Physiol. 2012;160:274–288. PubMed PMC
Gotor C., Romero L.C. S-sulfocysteine synthase function in sensing chloroplast redox status. Plant Signal Behav. 2013;8 PubMed PMC
Blumenthal S.G., Hendrickson H.R., Abrol Y.P., Conn E.E. Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine. J Biol Chem. 1968;243:5302–5307. PubMed
García I., Rosas T., Bejarano E.R., Gotor C., Romero L.C. Transient Transcriptional Regulation of the CYS-C1 Gene and Cyanide Accumulation upon Pathogen Infection in the Plant Immune Response. Plant Physiol. 2013;162:2015–2027. PubMed PMC
Watanabe M., Kusano M., Oikawa A., Fukushima A., Noji M., Saito K. Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol. 2008;146:310–320. PubMed PMC
Rennenberg H., Sekiya J., Wilson L.G., Filner P. Evidence for a futile sulfur cycle in leaves. Plant Physiol. 1981;67:S723.
Rennenberg H. Role of O-acetylserine in hydrogen sulfide emissions from pumpkin leaves in response to sulfate. Plant Physiol. 1983;73:560–565. PubMed PMC
Rennenberg H., Filner P. Stimulation of H2S emission from pumpkin leaves by inhibition of glutathione synthesis. Plant Physiol. 1982;69:766–770. PubMed PMC
Burandt P., Papenbrock J., Schmidt A., Bloem E., Haneklaus S., Schnug E. Genotypical differences in total sulfur contents and cysteine desulfhydrase activities in Brassica napus L. Phyton. 2001;41:75–86.
Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I. Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. J Exp Bot. 2004;55:2305–2312. PubMed
Riemenschneider A., Nikiforova V., Hoefgen R., De Kok L.J., Papenbrock J. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem. 2005;43:473–483. PubMed
Alvarez C., Garcia I., Moreno I., Pérez-Pérez M.E., Crespo J.L., Romero L.C. Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in arabidopsis. Plant Cell. 2012;24:4621–4634. PubMed PMC
Shi H., Ye T., Han N., Bian H., Liu X., Chan Z. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol. 2015;57:628–640. PubMed
Fotopoulos V., Christou A., Antoniou C., Manganaris G.A. Hydrogen sulphide: a versatile tool for the regulation of growth and defence responses in horticultural crops. J Horticult Sci Biotech. 2015;90:227–234.
Droux M., Ruffet M.L., Douce R., Job D. Interactions between serine acetyltransferase and O-acetylserine (thiol)lyase in higher plants – structural and kinetic properties of the free and bound enzymes. Eur J Biochem. 1998;255:235–245. PubMed
Xie Y., Lai D., Mao Y., Zhang W., Shen W., Guan R. Molecular Cloning, Characterization, and Expression Analysis of a Novel Gene Encoding L-Cysteine Desulfhydrase from Brassica napus. Mol Biotechnol. 2013;54:737–746. PubMed
Liu D., Lu J., Li H., Wang J., Pei Y. Characterization of the O-acetylserine(thiol)lyase gene family in Solanum lycopersicum L. Plant Mol Biol. 2019;99:123–134. PubMed
Harrington H.M., Smith I.K. Cysteine Metabolism in Cultured Tobacco Cells. Plant Physiol. 1980;65:151–155. PubMed PMC
Burandt P., Schmidt A., Papenbrock J. Three O-acetyl-L-serine(thiol)lyase isoenzymes from Arabidopsis catalyse cysteine synthesis and cysteine desulfuration at different pH values. J Plant Physiol. 2002;159:111–119.
Kabil O., Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 2014;20:770–782. PubMed PMC
Yadav P.K., Vitvitsky V., Carballal S., Seravalli J., Banerjee R. Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations. J Biol Chem. 2020;295:6299–6311. PubMed PMC
Metaxas M.A., Delwiche E.A. The L-cystein desulfhydrase of Escherichia coli. J Bacter. 1955;70:735–737. PubMed PMC
Takagi H., Ohtsu I. L-Cysteine Metabolism and Fermentation in Microorganisms. Adv Biochem Eng Biotechnol. 2017;159:129–151. PubMed
Li Z.G. Analysis of some enzymatic activities of hydrogen sulfide metabolism in plants. Meth Enzymol. 2015;555:253–269. PubMed
Rennenberg H., Arabatzis N., Grundel I. Cysteine desulphydrase activity in higher plants: Evidence for the action of L- and D-cysteine specific enzymes. Phytochemistry. 1987;26:1583–1589.
Papenbrock J., Riemenschneider A., Kamp A., Schulz-Vogt H.N., Schmidt A. Characterization of Cysteine-Degrading and H2S-Releasing Enzymes of Higher Plants – From the Field to the Test Tube and Back. Plant Biol. 2007;9:582–588. PubMed
Riemenschneider A., Wegele R., Schmidt A., Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J. 2005;272:1291–1304. PubMed
Heidenreich T., Wollers S., Mendel R.R., Bittner F. Characterization of the NifS-like Domain of ABA3 from Arabidopsis thaliana Provides Insight into the Mechanism of Molybdenum Cofactor Sulfuration. J Biol Chem. 2005;280:4213–4218. PubMed
Van Hoewyk D., Pilon M., Pilon-Smits E.H.H. The functions of NifS-like proteins in plant sulfur and selenium metabolism. Plant Sci. 2008;174:117–123.
Turowski V.R., Busi M.V., Gomez-Casati D.F. Structural and functional studies of the mitochondrial cysteine desulfurase from Arabidopsis thaliana. Mol Plant. 2012;5:1001–1010. PubMed
Laureano-Marin A.M., Garcia I., Romero L.C., Gotor C. Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana. Front Plant Sci. 2014;5:683. PubMed PMC
Scuffi D., Alvarez C., Laspina N., Gotor C., Lamattina L., Garcia-Mata C. Hydrogen Sulfide Generated by L-Cysteine Desulfhydrase Acts Upstream of Nitric Oxide to Modulate Abscisic Acid-Dependent Stomatal Closure. Plant Physiol. 2014;166:2065–2076. PubMed PMC
Khan M.N., Mobin M., Abbas Z.K., Siddiqui M.H. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide. 2017;68:91–102. PubMed
Li Z.G., Gu S.P. Hydrogen sulfide as a signal molecule in hematin-induced heat tolerance of tobacco cell suspension. Biol Plantarum. 2016;60:595–600.
Aroca A., Benito J.M., Gotor C., Romero L.C. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J Exp Bot. 2017;68:4915–4927. PubMed PMC
Fang T., Cao Z., Li J., Shen W., Huang L. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem. 2014;76:44–51. PubMed
Xie Y., Zhang C.h., Lai D., Sun Y., Samma M.K., Zhang J. Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. J Plant Physiol. 2014;171:53–62. PubMed
Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem. 2013;62:41–46. PubMed
Li ZG. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal Behav 2015;10:e1051278. PubMed PMC
Khan M.N., AlZuaibr F.M., Al-Huqail A.A., Siddiqui M.H., Ali H.M., Al-Muwayhi M.A. Hydrogen Sulfide-Mediated Activation of O-Acetylserine (Thiol) Lyase and L/D-Cysteine Desulfhydrase Enhance Dehydration Tolerance in Eruca sativa Mill. Int J Mol Sci. 2018;19:1–18. PubMed PMC
Da-Silva C.J., Fontes E.P.B., Modolo L.V. Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Sci. 2017;256:148–159. PubMed
Kumar D. Salicylic acid signaling in disease resistance. Plant Sci. 2014;228:127–134. PubMed
Liu X., Rockett K.S., Kørner C.J., Pajerowska-Mukhtar K.M. Salicylic acid signalling: new insights and prospects at a quarter-century milestone. Essays Biochem. 2015;58:101–113. PubMed
Rushton P.J., Somssich I.E., Ringler P., Shen Q.J. WRKY transcription factors. Trends Plant Sci. 2010;15:247–258. PubMed
Dong J., Chen C., Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol. 2003;51(21):37. PubMed
Liu Z., Fang H., Pei Y., Jin Z., Zhang L., Liu D. WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana. Sci Bull. 2015;60:995–1001.
Tahir J., Wanatabe M., Jing H.C., Hunter D.A., Tohge T., Nunes-Nesi A. Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in Arabidopsis. Plant J. 2013;73:118–130. PubMed
Ausma T., De Kok L.J. Atmospheric H2S: Impact on Plant Functioning. Front Plant Sci. 2019;10:743. PubMed PMC
Bloem E., Haneklaus S., Kesselmeier J., Schnug E. Sulfur Fertilization and Fungal Infections Affect the Exchange of H2S and COS from Agricultural Crops. J Agric Food Chem. 2012;60:7588–7596. PubMed
Pollacci E. Della ragione per cui il sulfo uceide l'oidio della vite, e sulla emissione d'idrogeno libero dalle piante. Gazz Chim Ital. 1875;5:451–460.
Foreman F.W. The Fungicidal Properties of Liver of Sulphur. J Agric Sci. 1910;3:400–416.
Marsh R.W. Investigations on the fungicidal action of sulphur. III. Studies on the toxicity of sulphuretted hydrogen and on the interaction of sulphur with fungi. J Hortic Sci. 1929;7:237–250.
Haneklaus S, Bloem E, Schnug E. Plant disease control by nutrient management: sulphur. In: Walters D (ed) Disease Control in Crops: Biological and Environmentally Friendly Approaches. Wiley-Blackwell, Oxford 2009; 263 pp.
Kruse C., Jost R., Lipschis M., Kopp B., Hartmann M., Hell R. Sulfur-enhanced defence: effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biol. 2007;9:608–619. PubMed
Hu K.D., Wang Q., Hu L.Y., Gao S.P., Wu J., Li Y.H. Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (Pyrus pyrifolia) by alleviation of oxidative damage and inhibition of fungal growth. PLoS ONE. 2014;9 PubMed PMC
Fu L.H., Hu K.D., Hu L.Y., Li Y.H., Hu L.B., Yan H. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PLoS ONE. 2014;9 PubMed PMC
Tang J., Hu K., Hu L., Li Y., Liu Y., Zhang H. Hydrogen Sulfide Acts as a Fungicide to Alleviate Senescence and Decay in Fresh-cut Sweetpotato. Hort Sci. 2014;49:938–943.
Zhang C., Shi J.Y., Zhu L.Q., Li C.L., Wang Q.G. Cooperative effects of hydrogen sulfide and nitric oxide on delaying softening and decay of strawberry. Int J Agric Biol Eng. 2014;7:114–122.
Neale H., Deshappriya N., Arnold D., Wood M.E., Whiteman M., Hancock J.T. Hydrogen sulfide causes excision of a genomic island in Pseudomonas syringae pv. phaseolicola. Eur J Plant Pathol. 2017;149:911–921.
Nicholls P., Marshall D.C., Cooper C.E., Wilson M.T. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans. 2013;41:1312–1316. PubMed
Guimarães B.G., Barbosa R.L., Soprano A.S., Campos B.M., de Souza T.A., Tonoli C.C. Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J Biol Chem. 2011;286:26148–26157. PubMed PMC
Forte E., Giuffrè A. How bacteria breathe in hydrogen sulfide-rich environments. Biochem (Lond) 2016;38:8–11.
Yang Z., Haneklaus S., De Kok L.J., Schnug E., Singh B.R. Effect of H2S and dimethyl sulfide (DMS) on growth and enzymatic activities of Rhizoctonia solani and its implications for sulfur-induced resistance (SIR) of agricultural crops. Phyton. 2006;46:55–70.
Riemenschneider A. Isolation and characterization of cysteine- degrading and H2S-releasing proteins in higher plants. PhD Thesis, University of Hanover 2006, Germany. PubMed
Geilfus C.M. The pH of the Apoplast: Dynamic Factor with Functional Impact Under Stress. Mol Plant. 2017;10:1371–1386. PubMed
Romero L., García I., Gotor C. L-Cysteine Desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signal Behav. 2013;8 PubMed PMC
Zhao Y., Biggs T.D., Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 2014;50:11788–11805. PubMed PMC
Toohey J.I. Sulfur signaling: Is the agent sulfide or sulfane? Anal Biochem. 2011;413:1–7. PubMed
Toohey J.I., Cooper A.J.L. Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology. Molecules. 2014;19:12789–12813. PubMed PMC
Filipovic M.R., Jovanovic V.M. More than just an intermediate: hydrogen sulfide signalling in plants. J Exp Bot. 2017;68:4733–4736. PubMed PMC
Zivanovic J., Kouroussis E., Kohl J.B., Adhikari B., Bursac B., Schott-Roux S. Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metab. 2019;30:1152–1170. PubMed PMC
Jin Z, Pei Y. Physiological Implications of Hydrogen Sulfide in Plants: Pleasant Exploration behind Its Unpleasant Odour. Oxid Med Cell Longev 2015; Article ID 397502. PubMed PMC
Sameeullah M., Khan F.A., Özer G., Aslam N., Gurel E., Waheed M.T. CRISPR/Cas9-Mediated Immunity in Plants Against Pathogens. Curr Issue Mol Biol. 2018;26:55–64. PubMed