Bioactive Steroids from the Red Sea Soft Coral Sinularia polydactyla

. 2020 Dec 10 ; 18 (12) : . [epub] 20201210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33322046

Grantová podpora
70/3/14684 National and Kapodistrian University of Athens
70/3/14685 National and Kapodistrian University of Athens
19-01383S Czech Science Foundation
20-15621S Czech Science Foundation
IGA_PrF_2020_021 Czech Science Foundation

Six new (1, 2, 6, 8, 13, and 20) and twenty previously isolated (3-5, 7, 9-12, 14-19, and 21-26) steroids featuring thirteen different carbocycle motifs were isolated from the organic extract of the soft coral Sinularia polydactyla collected from the Hurghada reef in the Red Sea. The structures and the relative configurations of the isolated natural products have been determined based on extensive analysis of their NMR and MS data. The cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activity of compounds 3-7, 9-12, 14-20, and 22-26, as well as their effect on androgen receptor-regulated transcription was evaluated in vitro in human tumor and non-cancerous cells. Steroids 22 and 23 showed significant cytotoxicity in the low micromolar range against the HeLa and MCF7 cancer cell lines, while migration of endothelial cells was inhibited by compounds 11, 12, 22, and 23 at 20 µM. The results of the androgen receptor (AR) reporter assay showed that compound 11 exhibited the strongest inhibition of AR at 10 µM, while it is noteworthy that steroids 10, 16, and 20 displayed increased inhibition of AR with decreasing concentrations. Additionally, compounds 11 and 23 showed neuroprotective activity on neuron-like SH-SY5Y cells.

Zobrazit více v PubMed

Kotb M.M.A., Hanafy M.H., Rirache H., Matsumura S., Al-Sofyani A.A., Ahmed A.G., Bawazir G., Al-Horani F.A. Status of coral reefs in the Red Sea and Gulf of Aden region. In: Wilkinson C., editor. Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre; Townsville, Australia: 2008. pp. 67–78.

Carroll A.R., Copp B.R., Davis R.A., Keyzers R.A., Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2020;37:175–223. doi: 10.1039/C9NP00069K. PubMed DOI

MarinLit A Database of the Marine Natural Products Literature. [(accessed on 30 September 2020)]; Available online: http://pubs.rsc.org/marinlit/

Končić M., Ioannou E., Sawadogo W., Abdel-Razik A., Vagias C., Diederich M., Roussis V. 4a-Methylated steroids with cytotoxic activity from the soft coral Litophyton mollis. Steroids. 2016;115:130–135. doi: 10.1016/j.steroids.2016.08.017. PubMed DOI

Yu S., Deng Z., van Ofwegen L., Proksch P., Lin W. 5,8-Epidioxysterols and related derivatives from a Chinese soft coral Sinularia flexibilis. Steroids. 2006;71:955–959. doi: 10.1016/j.steroids.2006.07.002. PubMed DOI

Kokke W., Bohlin L., Fenical W., Djerassi C. Novel dinoflagellate 4α-methylated sterols from four caribbean gorgonians. Phytochemistry. 1982;21:881–887. doi: 10.1016/0031-9422(82)80085-X. DOI

Kobayashi M., Ishizaka T., Mitsuhashi H. Marine sterols X. Minor constituents of the sterols of the soft coral Sarcophyton glaucum. Steroids. 1982;40:209–221. doi: 10.1016/0039-128X(82)90034-4. PubMed DOI

Mehta G., Venkateswarlu Y., Rama R.M., Uma R. A novel 4α-methyl sterol from the soft coral Nephthea chabroli. J. Chem. Res. 1999;23:628–629. doi: 10.1039/a904057i. DOI

Bortolotto M., Braekman J., Daloze D., Tursch B. Chemical studies of marine invertebrates. XXIX. 4α-methyl-3β,8β-dihydroxy-5α-ergost-24(28)-en-23-one, a novel polyhydroxygenated sterol from the soft coral litophyton viridis. Steroids. 1977;30:159–164. doi: 10.1016/0039-128X(77)90077-0. PubMed DOI

Cheng S., Huang Y., Wen Z., Hsu C., Wang S., Dai C., Duh C. New 19-oxygenated and 4-methylated steroids from the formosan soft coral Nephthea chabroli. Steroids. 2009;74:543–547. doi: 10.1016/j.steroids.2009.02.004. PubMed DOI

Huang Y., Wen Z., Wang S., Hsu C., Duh C. New anti-inflammatory 4-methylated steroids from the formosan soft coral Nephthea chabroli. Steroids. 2008;73:1181–1186. doi: 10.1016/j.steroids.2008.05.007. PubMed DOI

Viegelmann C., Parker J., Ooi T., Clements C., Abbott G., Young L., Kennedy J., Dobson A., Edrada-Ebel R. Isolation and identification of antitrypanosomal and antimycobacterial active steroids from the sponge Haliclona simulans. Mar. Drugs. 2014;12:2937–2952. doi: 10.3390/md12052937. PubMed DOI PMC

Riccardis F., Minale L. Marine sterols side-chain-oxygenated sterols, possibly of abiotic origin, from the new caledonian sponge stelodoryx chlorophylla. J. Nat. Prod. 1993;56:282–287. doi: 10.1021/np50092a016. DOI

Iguchi K., Saitou S., Yamada Y. Novel 19-oxygenated sterols from the okinawan soft coral Litophyton viridis. Chem. Pharm. Bull. 1989;37:2553–2554. doi: 10.1248/cpb.37.2553. DOI

Cheng S., Dai C., Duh C. New 4-methylated and 19-oxygenated steroids from the formosan soft coral Nephthea erecta. Steroids. 2007;72:653–659. doi: 10.1016/j.steroids.2007.05.001. PubMed DOI

Ellithey M., Lall N., Hussein A., Meyer D. Cytotoxic, cytostatic and HIV-1 PR inhibitory activities of the soft coral Litophyton arboretum. Mar. Drugs. 2013;11:4917–4936. doi: 10.3390/md11124917. PubMed DOI PMC

Duh C., Wang S., Chu M., Sheu J. Cytotoxic sterols from the soft coral Nephthea erecta. J. Nat. Prod. 1998;61:1022–1024. doi: 10.1021/np9800497. PubMed DOI

Iorizzi M., Minale L., Riccio R. Polar steroids from the marine scallop Patinopecten yessoensis. J. Nat. Prod. 1988;51:1098–1103. doi: 10.1021/np50060a008. DOI

Sattler M., Quinnan L.R., Pride Y.B., Gramlich J.L., Chu S.C., Even G.C., Kraeft S.-K., Chen L.B., Salgia R. 2-Methoxyestradiol alters cell motility, migration, and adhesion. Blood. 2003;102:289–296. doi: 10.1182/blood-2002-03-0729. PubMed DOI

Trepels T., Zeiher A.M., Fichtlscherer S. The endothelium and inflammation. Endothelium. 2006;13:423–429. doi: 10.1080/10623320601061862. PubMed DOI

Zhang F., Altorki N.K., Mestre J.R., Subbaramaiah K., Dannenberg A.J. Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis. 1999;20:445–451. doi: 10.1093/carcin/20.3.445. PubMed DOI

Jorda R., Řezníčková E., Kiełczewska U., Maj J., Morzycki J.W., Siergiejczyk L., Bazgier V., Berka K., Rárová L., Wojtkielewicz A. Synthesis of novel galeterone derivatives and evaluation of their in vitro activity against prostate cancer cell lines. Eur. J. Med. Chem. 2019;179:483–492. doi: 10.1016/j.ejmech.2019.06.040. PubMed DOI

Rárová L., Sedlák D., Oklestkova J., Steigerová J., Liebl J., Zahler S., Bartůněk P., Kolář Z., Kohout L., Kvasnica M., et al. The novel brassinosteroid analog BR4848 inhibits angiogenesis in human endothelial cells and induces apoptosis in human cancer cells in vitro. J. Steroid Biochem. Mol. Biol. 2018;178:263–271. PubMed

Calderon Guzman D., Bratoeff E., Chávez-Riveros A., Osnaya N., Barragan G., Hernandez Garcia E., Olguín H., Garcia E. Effect of two antiandrogens as protectors of prostate and brain in a Huntington’s animal model. Anticancer Agents Med. Chem. 2014;14:1293–1301. doi: 10.2174/1871520614666141010094847. PubMed DOI

Colle D., Santos D., Hartwig J., Godoi M., Engel D., de Bem A., Braga A., Farina M. Succinobucol, a lipid-lowering drug, protects against 3-nitropropionic acid-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y cells via upregulation of glutathione levels and glutamate cysteine ligase activity. Mol. Neurobiol. 2016;53:1280–1295. doi: 10.1007/s12035-014-9086-x. PubMed DOI

Dengler W.A., Schulte J., Berger D.P., Mertelsmann R., Fiebig H.H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs. 1995;6:522–532. doi: 10.1097/00001813-199508000-00005. PubMed DOI

Rárová L., Steigerová J., Kvasnica M., Bartůněk P., Křížová K., Chodounská H., Kolář Z., Sedlák D., Oklestkova J., Strnad M. Structure activity relationship studies on cytotoxicity and the effects on steroid receptor of AB-functionalized cholestanes. J. Steroid Biochem. Mol. Biol. 2016;159:154–169. doi: 10.1016/j.jsbmb.2016.03.017. PubMed DOI

Bartonkova I., Novotna A., Dvorak Z. Novel stably transfected human reporter cell line AIZ-AR as a tool for an assessment of human androgen receptor transcriptional activity. PLoS ONE. 2015;10:e0121316. doi: 10.1371/journal.pone.0121316. PubMed DOI PMC

Cheung Y.-T., Lau W.K.-W., Yu M.-S., Lai C.S.-W., Yeung S.-C., So K.-F., Chang R.C.-C. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 2009;30:127–135. doi: 10.1016/j.neuro.2008.11.001. PubMed DOI

Dwane S., Durack E., Kiely P.A. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res. Notes. 2013;6:366. doi: 10.1186/1756-0500-6-366. PubMed DOI PMC

Morrogh-Bernard H.C., Foitová I., Yeen Z., Wilkin P., de Martin R., Rárová L., Doležal K., Nurcahyo W., Olšanský M. Self-medication by orang-utans (Pongo pygmaeus) using bioactive properties of Dracaena cantleyi. Sci. Rep. 2017;7:16653. doi: 10.1038/s41598-017-16621-w. PubMed DOI PMC

Stone W.L., Qui M., Smith M. Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide. BMC Cell Biol. 2003;4:1. doi: 10.1186/1471-2121-4-1. PubMed DOI PMC

Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:9.

Woo J.-K., Yun J.-H., Ahn S., Sim C.J., Noh M., Oh D.-C., Oh K.-B., Shin J. Dictyoneolone, a B/C ring juncture-defused steroid from a Dictyonella sp. sponge. Tetrahedron Lett. 2018;59:2021–2024. doi: 10.1016/j.tetlet.2018.04.026. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...