Effect of Sepatronium Bromide (YM-155) on DNA Double-Strand Breaks Repair in Cancer Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_LF_2020_023
Internal grant of Palacky University
ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868)
Ministry of School, Education, Youth and Sports of the Czech Republic
TN01000013
Technology Agency of the Czech Republic
PubMed
33322336
PubMed Central
PMC7763167
DOI
10.3390/ijms21249431
PII: ijms21249431
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, YM-155, molecular mechanism of action, survivin,
- MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- imidazoly farmakologie MeSH
- lidé MeSH
- naftochinony farmakologie MeSH
- poškození DNA účinky léků MeSH
- survivin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- imidazoly MeSH
- naftochinony MeSH
- sepantronium MeSH Prohlížeč
- survivin MeSH
Survivin, as an antiapoptotic protein often overexpressed in cancer cells, is a logical target for potential cancer treatment. By overexpressing survivin, cancer cells can avoid apoptotic cell death and often become resistant to treatments, representing a significant obstacle in modern oncology. A survivin suppressor, an imidazolium-based compound known as YM-155, is nowadays studied as an attractive anticancer agent. Although survivin suppression by YM-155 is evident, researchers started to report that YM-155 is also an inducer of DNA damage introducing yet another anticancer mechanism of this drug. Moreover, the concentrations of YM-155 for DNA damage induction seems to be far lower than those needed for survivin inhibition. Understanding the molecular mechanism of action of YM-155 is of vital importance for modern personalized medicine involving the selection of responsive patients and possible treatment combinations. This review focuses mainly on the documented effects of YM-155 on DNA damage signaling pathways. It summarizes up to date literature, and it outlines the molecular mechanism of YM-155 action in the context of the DNA damage field.
Zobrazit více v PubMed
Deveraux Q.L., Stennicke H.R., Salvesen G.S., Reed J.C. Endogenous inhibitors of caspases. J. Clin. Immunol. 1999;19:388–398. doi: 10.1023/A:1020502800208. PubMed DOI
Deveraux Q.L., Reed J.C. IAP family proteins-Suppressors of apoptosis. Genes Dev. 1999;13:239–252. doi: 10.1101/gad.13.3.239. PubMed DOI
Kelly R.J., Lopez-Chavez A., Citrin D., Janik J.E., Morris J.C. Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol. Cancer. 2011;10:35. doi: 10.1186/1476-4598-10-35. PubMed DOI PMC
Garg H., Suri P., Gupta J.C., Talwar G.P., Dubey S. Survivin: A unique target for tumor therapy. Cancer Cell Int. 2016;16:1–14. doi: 10.1186/s12935-016-0326-1. PubMed DOI PMC
Wheatley S.P., Altieri D.C. Survivin at a glance. J. Cell Sci. 2019;132:jcs.223826. doi: 10.1242/jcs.223826. PubMed DOI PMC
Nakahara T., Takeuchi M., Kinoyama I., Minematsu T., Shirasuna K., Matsuhisa A., Kita A., Tominaga F., Yamanaka K., Kudoh M., et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res. 2007;67:8014–8021. doi: 10.1158/0008-5472.CAN-07-1343. PubMed DOI
Rauch A., Hennig D., Schäfer C., Wirth M., Marx C., Heinzel T., Schneider G., Krämer O.H. Survivin and YM155: How faithful is the liaison? Biochim. Biophys. Acta-Rev. Cancer. 2014;1845:202–220. doi: 10.1016/j.bbcan.2014.01.003. PubMed DOI
Tolcher A.W., Mita A., Lewis L.D., Garrett C.R., Till E., Daud A.I., Patnaik A., Papadopoulos K., Takimoto C., Bartels P., et al. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J. Clin. Oncol. 2008;26:5198–5203. doi: 10.1200/JCO.2008.17.2064. PubMed DOI PMC
De Vries E.G.E., De Jong S. Exploiting the apoptotic route for cancer treatment: A single hit will rarely result in a home run. J. Clin. Oncol. 2008;26:5151–5153. doi: 10.1200/JCO.2008.18.3160. PubMed DOI
Iwasa T., Okamoto I., Suzuki M., Nakahara T., Yamanaka K., Hatashita E., Yamada Y., Fukuoka M., Ono K., Nakagawa K. Radiosensitizing effect of YM155, a novel small-molecule survivin suppressant, in non-small cell lung cancer cell lines. Clin. Cancer Res. 2008;14:6496–6504. doi: 10.1158/1078-0432.CCR-08-0468. PubMed DOI
Chakravarti A., Zhai G.G., Zhang M., Malhotra R., Latham D.E., Delaney M.A., Robe P., Nestler U., Song Q., Loeffler J. Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogene. 2004;23:7494–7506. doi: 10.1038/sj.onc.1208049. PubMed DOI
Capalbo G., Dittmann K., Weiss C., Reichert S., Hausmann E., Rödel C., Rödel F. Radiation-Induced Survivin Nuclear Accumulation is Linked to DNA Damage Repair. Int. J. Radiat. Oncol. Biol. Phys. 2010;77:226–234. doi: 10.1016/j.ijrobp.2009.12.001. PubMed DOI
Glaros T.G., Stockwin L.H., Mullendore M.E., Smith B., Morrison B.L., Newton D.L. The “survivin suppressants” NSC 80467 and YM155 induce a DNA damage response. Cancer Chemother. Pharmacol. 2012;70:207–212. doi: 10.1007/s00280-012-1868-0. PubMed DOI
Holmes D. Cancer drug’s survivin suppression called into question. Nat. Med. 2012;18:842–843. doi: 10.1038/nm0612-842b. PubMed DOI
Lindahl T., Barnes D.E. Cold Spring Harbor Symposia on Quantitative Biology. Volume 65. The Cold Spring Harbor Laboratory; Cold Spring, NY, USA: 2000. Repair of Endogenous DNA Damage; pp. 127–133. PubMed DOI
Friedberg E.C. A brief history of the DNA repair field. Cell Res. 2008;18:3–7. doi: 10.1038/cr.2007.113. PubMed DOI
Eltabbakh G.H., Awtrey C.S. Current treatment for ovarian cancere. Expert Opin. Pharmacother. 2001;2:109–124. doi: 10.1517/14656566.2.1.109. PubMed DOI
Yang J., Xu Z.P., Huang Y., Hamrick H.E., Duerksen-Hughes P.J., Yu Y.N. ATM and ATR: Sensing DNA damage. World J. Gastroenterol. 2004;10:155–160. doi: 10.3748/wjg.v10.i2.155. PubMed DOI PMC
Zeman M.K., Cimprich K.A. Causes and consequences of replication stress. Nat. Cell Biol. 2014;16:2–9. doi: 10.1038/ncb2897. PubMed DOI PMC
Gaillard H., García-Muse T., Aguilera A. Replication stress and cancer. Nat. Rev. Cancer. 2015;15:276–280. doi: 10.1038/nrc3916. PubMed DOI
Bartek J., Mistrik M., Bartkova J. Thresholds of replication stress signaling in cancer development and treatment. Nat. Struct. Mol. Biol. 2012;19:5–7. doi: 10.1038/nsmb.2220. PubMed DOI
Mazzio E.A., Lewis C.A., Elhag R., Soliman K.F. Effects of sepantronium bromide (YM-155) on the whole transcriptome of MDA-MB-231 cells: Highlight on impaired ATR/ATM fanconi anemia DNA damage response. Cancer Genom. Proteom. 2018;15:249–264. doi: 10.21873/cgp.20083. PubMed DOI PMC
Toledo L.I., Altmeyer M., Rask M.B., Lukas C., Larsen D.H., Povlsen L.K., Bekker-Jensen S., Mailand N., Bartek J., Lukas J. XATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 2013;155:1088–1103. doi: 10.1016/j.cell.2013.10.043. PubMed DOI
Bonner W.M., Redon C.E., Dickey J.S., Nakamura A.J., Sedelnikova O.A., Solier S., Pommier Y. γH2AX and cancer. Nat. Rev. Cancer. 2008;8:957–967. doi: 10.1038/nrc2523. PubMed DOI PMC
Bétermier M., Bertrand P., Lopez B.S. Is Non-Homologous End-Joining Really an Inherently Error-Prone Process? PLoS Genet. 2014;10:e1004086. doi: 10.1371/journal.pgen.1004086. PubMed DOI PMC
Chakraborty A., Tapryal N., Venkova T., Horikoshi N., Pandita R.K., Sarker A.H., Sarkar P.S., Pandita T.K., Hazra T.K. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat. Commun. 2016;7:1–12. doi: 10.1038/ncomms13049. PubMed DOI PMC
Scully R., Panday A., Elango R., Willis N.A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 2019;20:698–714. doi: 10.1038/s41580-019-0152-0. PubMed DOI PMC
Zhou B.S., Elledge S.J. DNADamageResponse. Nature. 2000;408:433–439. doi: 10.1038/35044005. PubMed DOI
Yamamoto H., Ngan C.Y., Monden M. Cancer cells survive with survivin. Cancer Sci. 2008;99:1709–1714. doi: 10.1111/j.1349-7006.2008.00870.x. PubMed DOI PMC
Cohen C., Lohmann C.M., Cotsonis G., Lawson D., Santoianni R. Survivin expression in ovarian carcinoma: Correlation with apoptotic markers and prognosis. Mod. Pathol. 2003;16:574–583. doi: 10.1097/01.MP.0000073868.31297.B0. PubMed DOI
Nakamura N., Yamauchi T., Hiramoto M., Yuri M., Naito M., Takeuchi M., Yamanaka K., Kita A., Nakahara T., Kinoyama I., et al. Interleukin enhancer-binding factor 3/NF110 is a target of YM155, a suppressant of survivin. Mol. Cell. Proteom. 2012;11:1–6. doi: 10.1074/mcp.M111.013243. PubMed DOI PMC
Mir R., Stanzani E., Martinez-Soler F., Villanueva A., Vidal A., Condom E., Ponce J., Gil J., Tortosa A., Giménez-Bonafé P. YM155 sensitizes ovarian cancer cells to cisplatin inducing apoptosis and tumor regression. Gynecol. Oncol. 2014;132:211–220. doi: 10.1016/j.ygyno.2013.11.013. PubMed DOI
Sales L., De Sousa G.R., Ferreira-Silva G., Castro-Gamero A.M., Ionta M., De Oliveira J.C. YM155 induces apoptosis in p53-deficient T-acute lymphoblastic leukemia cells independent of survivin inhibition. Anticancer Drugs. 2016;28:298–306. doi: 10.1097/CAD.0000000000000462. PubMed DOI
Sim M.Y., Huynh H., Go M.L., Yuen J.S.P. Action of YM155 on clear cell renal cell carcinoma does not depend on surviving expression levels. PLoS ONE. 2017;12:e0178168. doi: 10.1371/journal.pone.0178168. PubMed DOI PMC
Qin Q., Cheng H., Lu J., Zhan L., Zheng J., Cai J., Yang X., Xu L., Zhu H., Zhang C., et al. Small-molecule survivin inhibitor YM155 enhances radiosensitization in esophageal squamous cell carcinoma by the abrogation of G2checkpoint and suppression of homologous recombination repair. J. Hematol. Oncol. 2014;7:62. doi: 10.1186/s13045-014-0062-8. PubMed DOI PMC
Terzoudi G.I., Manola K.N., Pantelias G.E., Iliakis G. Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res. 2005;65:11292–11296. doi: 10.1158/0008-5472.CAN-05-2148. PubMed DOI
Benada J., Macurek L. Targeting the checkpoint to kill cancer cells. Biomolecules. 2015;5:1912–1937. doi: 10.3390/biom5031912. PubMed DOI PMC
Hong M., Ren M., Silva J., Kennedy T., Choi J., Cowell J.K., Hao Z. Sepantronium is a DNA damaging agent that synergizes with PLK1 inhibitor volasertib. Am. J. Cancer Res. 2014;4:135–147. PubMed PMC
Rudolph D., Steegmaier M., Hoffmann M., Grauert M., Baum A., Quant J., Haslinger C., Garin-Chesa P., Adolf G.R. BI 6727, a polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin. Cancer Res. 2009;15:3094–3102. doi: 10.1158/1078-0432.CCR-08-2445. PubMed DOI
Medema R.H., Lin C.C., Yang J.C.H. Polo-like kinase 1 inhibitors and their potential role in anticancer therapy, with a focus on NSCLC. Clin. Cancer Res. 2011;17:6459–6466. doi: 10.1158/1078-0432.CCR-11-0541. PubMed DOI
Cheng S.M., Chang Y.C., Liu C.Y., Lee J.Y.C., Chan H.H., Kuo C.W., Lin K.Y., Tsai S.L., Chen S.H., Li C.F., et al. YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br. J. Pharmacol. 2015;172:214–234. doi: 10.1111/bph.12935. PubMed DOI PMC
Chang B.H., Johnson K., LaTocha D., Rowley J.S.J., Bryant J., Burke R., Smith R.L., Loriaux M., Müschen M., Mullighan C., et al. YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. J. Hematol. Oncol. 2015;8:39. doi: 10.1186/s13045-015-0132-6. PubMed DOI PMC
Tyner J.W., Jemal A.M., Thayer M., Druker B.J., Chang B.H. Targeting survivin and p53 in pediatric acute lymphoblastic leukemia. Leukemia. 2012;26:623–632. doi: 10.1038/leu.2011.249. PubMed DOI PMC
Véquaud E., Séveno C., Loussouarn D., Engelhart L., Campone M., Juin P., Barillé-Nion S. YM155 potently triggers cell death in breast cancer cells through an autophagy-NF-kB network. Oncotarget. 2015;6:13476–13486. doi: 10.18632/oncotarget.3638. PubMed DOI PMC
Sarosiek K.A., Ni Chonghaile T., Letai A. Mitochondria: Gatekeepers of response to chemotherapy. Trends Cell Biol. 2013;23:612–619. doi: 10.1016/j.tcb.2013.08.003. PubMed DOI PMC
Janku F., McConkey D.J., Hong D.S., Kurzrock R. Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol. 2011;8:528–539. doi: 10.1038/nrclinonc.2011.71. PubMed DOI
Perkins N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer. 2012;12:121–132. doi: 10.1038/nrc3204. PubMed DOI
Iwasa T., Okamoto I., Takezawa K., Yamanaka K., Nakahara T., Kita A., Koutoku H., Sasamata M., Hatashita E., Yamada Y., et al. Marked anti-tumour activity of the combination of YM155, a novel survivin suppressant, and platinum-based drugs. Br. J. Cancer. 2010;103:36–42. doi: 10.1038/sj.bjc.6605713. PubMed DOI PMC
Alvarez M., Paull K., Monks A., Hose C., Lee J.S., Weinstein J., Grever M., Bates S., Fojo T. Generation of a drug resistance profile by quantitation of mdr-1/P- glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen. J. Clin. Investig. 1995;95:2205–2214. doi: 10.1172/JCI117910. PubMed DOI PMC
Jackson S.P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2010;461:1071–1078. doi: 10.1038/nature08467. PubMed DOI PMC
Hu S., Fu S., Xu X., Chen L., Xu J., Li B., Qu Y., Yu H., Lu S., Li W. The mechanism of radiosensitization by YM155, a novel small molecule inhibitor of survivin expression, is associated with DNA damage repair. Cell. Physiol. Biochem. 2015;37:1219–1230. doi: 10.1159/000430245. PubMed DOI
Véquaud E., Desplanques G., Jézéquel P., Juin P., Barillé-Nion S. Survivin contributes to DNA repair by homologous recombination in breast cancer cells. Breast Cancer Res. Treat. 2016;155:53–63. doi: 10.1007/s10549-015-3657-z. PubMed DOI PMC
Jane E.P., Premkumar D.R., Sutera P.A., Cavaleri J.M., Pollack I.F. Survivin inhibitor YM155 induces mitochondrial dysfunction, autophagy, DNA damage and apoptosis in Bcl-xL silenced glioma cell lines. Mol. Carcinog. 2017;56:1251–1265. doi: 10.1002/mc.22587. PubMed DOI PMC
Zhang X., Wang X., Xu R., Ji J., Xu Y., Han M., Wei Y., Huang B., Chen A., Zhang Q., et al. YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J. Transl. Med. 2018;16:1–11. doi: 10.1186/s12967-018-1451-5. PubMed DOI PMC
Park C.M., Park M.J., Kwak H.J., Lee H.C., Kim M.S., Lee S.H., Park I.C., Rhee C.H., Hong S. Il Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res. 2006;66:8511–8519. doi: 10.1158/0008-5472.CAN-05-4340. PubMed DOI
El Bezawy R., Cominetti D., Fenderico N., Zuco V., Beretta G.L., Dugo M., Arrighetti N., Stucchi C., Rancati T., Valdagni R., et al. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett. 2017;395:53–62. doi: 10.1016/j.canlet.2017.02.033. PubMed DOI
Tong D., Liu Q., Liu G., Xu J., Lan W., Jiang Y., Xiao H., Zhang D., Jiang J. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett. 2017;389:23–32. doi: 10.1016/j.canlet.2016.12.031. PubMed DOI
Lau J., Ilkhanizadeh S., Wang S., Miroshnikova Y.A., Salvatierra N.A., Wong R.A., Schmidt C., Weaver V.M., Weiss W.A., Persson A.I. STAT3 Blockade Inhibits Radiation-Induced Malignant Progression in Glioma. Cancer Res. 2015;75:4302–4311. doi: 10.1158/0008-5472.CAN-14-3331. PubMed DOI PMC
Winter G.E., Radic B., Mayor-Ruiz C., Blomen V.A., Trefzer C., Kandasamy R.K., Huber K.V.M., Gridling M., Chen D., Klampfl T., et al. The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nat. Chem. Biol. 2014;10:768–773. doi: 10.1038/nchembio.1590. PubMed DOI PMC
Hong M., Ren M.Q., Silva J., Paul A., Wilson W.D., Schroeder C., Weinberger P., Janik J., Hao Z. YM155 inhibits topoisomerase function. Anticancer Drugs. 2017;28:142–152. doi: 10.1097/CAD.0000000000000441. PubMed DOI PMC
Hevener K.E., Verstak T.A., Lutat K.E., Riggsbee D.L., Mooney J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B. 2018;8:844–861. doi: 10.1016/j.apsb.2018.07.008. PubMed DOI PMC
Cuya S.M., Bjornsti M.A., van Waardenburg R.C.A.M. DNA topoisomerase-targeting chemotherapeutics: What’s new? Cancer Chemother. Pharmacol. 2017;80:1–14. doi: 10.1007/s00280-017-3334-5. PubMed DOI PMC
Delgado J.L., Hsieh C.M., Chan N.L., Hiasa H. Topoisomerases as Anticancer Targets. Biochem. J. 2018;475:373–398. doi: 10.1042/BCJ20160583. PubMed DOI PMC
Wani T.H., Surendran S., Jana A., Chakrabarty A., Chowdhury G. Quinone-Based Antitumor Agent Sepantronium Bromide (YM155) Causes Oxygen-Independent Redox-Activated Oxidative DNA Damage. Chem. Res. Toxicol. 2018;31:612–618. doi: 10.1021/acs.chemrestox.8b00094. PubMed DOI
Loor G., Kondapalli J., Schriewer J.M., Chandel N.S., Vanden Hoek T.L., Schumacker P.T. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic. Biol. Med. 2010;49:1925–1936. doi: 10.1016/j.freeradbiomed.2010.09.021. PubMed DOI PMC
Wani T.H., Surendran S., Mishra V.S., Chaturvedi J., Chowdhury G., Chakrabarty A. Adaptation to chronic exposure to sepantronium bromide (YM155), a prototypical survivin suppressant is due to persistent DNA damage-response in breast cancer cells. Oncotarget. 2018;9:33589–33600. doi: 10.18632/oncotarget.26096. PubMed DOI PMC
Cree I.A., Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 2017;17:1–8. doi: 10.1186/s12885-016-2999-1. PubMed DOI PMC
Satoh T., Okamoto I., Miyazaki M., Morinaga R., Tsuya A., Hasegawa Y., Terashima M., Ueda S., Fukuoka M., Ariyoshi Y., et al. Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin. Cancer Res. 2009;15:3872–3880. doi: 10.1158/1078-0432.CCR-08-1946. PubMed DOI
Skrott Z., Mistrik M., Andersen K.K., Friis S., Majera D., Gursky J., Ozdian T., Bartkova J., Turi Z., Moudry P., et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552:194–199. doi: 10.1038/nature25016. PubMed DOI PMC
Majera D., Skrott Z., Chroma K., Merchut-Maya J.M., Mistrik M., Bartek J. Targeting the NPL4 Adaptor of p97/VCP Segregase by Disulfiram as an Emerging Cancer Vulnerability Evokes Replication Stress and DNA Damage while Silencing the ATR Pathway. Cells. 2020;9:469. doi: 10.3390/cells9020469. PubMed DOI PMC
Skrott Z., Majera D., Gursky J., Buchtova T., Hajduch M., Mistrik M., Bartek J. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene. 2019;38:6711–6722. doi: 10.1038/s41388-019-0915-2. PubMed DOI