Mitochondrial DNA Affects the Expression of Nuclear Genes Involved in Immune and Stress Responses in a Breast Cancer Model

. 2020 ; 11 () : 543962. [epub] 20201124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33329014

Tumor cells without mitochondrial (mt) DNA (ρ0 cells) are auxotrophic for uridine, and their growth is supported by pyruvate. While ATP synthesis in ρ0 cells relies on glycolysis, they fail to form tumors unless they acquire mitochondria from stromal cells. Mitochondrial acquisition restores respiration that is essential for de novo pyrimidine biosynthesis and for mitochondrial ATP production. The physiological processes that underpin intercellular mitochondrial transfer to tumor cells lacking mtDNA and the metabolic remodeling and restored tumorigenic properties of cells that acquire mitochondria are not well understood. Here, we investigated the changes in mitochondrial and nuclear gene expression that accompany mtDNA deletion and acquisition in metastatic murine 4T1 breast cancer cells. Loss of mitochondrial gene expression in 4T1ρ0 cells was restored in cells recovered from subcutaneous tumors that grew from 4T1ρ0 cells following acquisition of mtDNA from host cells. In contrast, the expression of most nuclear genes that encode respiratory complex subunits and mitochondrial ribosomal subunits was not greatly affected by loss of mtDNA, indicating ineffective mitochondria-to-nucleus communication systems for these nuclear genes. Further, analysis of nuclear genes whose expression was compromised in 4T1ρ0 cells showed that immune- and stress-related genes were the most highly differentially expressed, representing over 70% of those with greater than 16-fold higher expression in 4T1 compared with 4T1ρ0 cells. The monocyte recruiting chemokine, Ccl2, and Psmb8, a subunit of the immunoproteasome that generates MHCI-binding peptides, were the most highly differentially expressed. Early monocyte/macrophage recruitment into the tumor mass was compromised in 4T1ρ0 cells but recovered before mtDNA could be detected. Taken together, our results show that mitochondrial acquisition by tumor cells without mtDNA results in bioenergetic remodeling and re-expression of genes involved in immune function and stress adaptation.

Zobrazit více v PubMed

Ahmad T., Mukherjee S., Pattnaik B., Kumar M., Singh S., Rehman R., et al. (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33 994–1010. PubMed PMC

Appleby R. D., Porteous W. K., Hughes G., James A. M., Shannon D., Wei Y. H., et al. (1999). Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. Eur. J. Biochem. 262 108–116. 10.1046/j.1432-1327.1999.00350.x PubMed DOI

Aretz I., Hardt C., Wittig I., Meierhofer D. (2016). An impaired respiratory electron chain triggers down-regulation of the energy metabolism and de-ubiquitination of solute carrier amino acid transporters. Mol. Cell. Proteomics 15 1526–1538. 10.1074/mcp.m115.053181 PubMed DOI PMC

Bajzikova M., Kovarova J., Coelho A. R., Boukalova S., Oh S., Rohlenova K., et al. (2019). Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 29 399–416. 10.1016/j.cmet.2018.10.014 PubMed DOI PMC

Benjamini Y., Hockberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI

Berridge M., Dong L., Neuzil J. (2015). Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Res. 75 3203–3208. 10.1158/0008-5472.can-15-0859 PubMed DOI

Berridge M. V., Herst P. M., Grasso C. (2020). “Chapter 20: Mitochondrial movement between mammalian cells: an emerging physiological phenomenon,” in The Human Mitochondrial Genome: From Biology to Disease, eds Porcelli A.-M., Gasparre G. (Elsevier; ), 515–546. 10.1016/B978-0-12-819656-4.00020-6 DOI

Berridge M. V., McConnell M. J., Grasso C., Bajzikova M., Kovarova J., Neuzil J. (2016). Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr. Opin. Genet. Dev. 38 75–82. 10.1016/j.gde.2016.04.003 PubMed DOI

Bingle L., Brown N. J., Lewis C. E. (2002). Role of TAMs in tumour progression and therapies. J. Pathol. 8 254–265. 10.1002/path.1027 PubMed DOI

Biswas S. K., Sica A., Lewis C. E. (2014). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J. Immunol. 180 2011–2017. 10.4049/jimmunol.180.4.2011 PubMed DOI

Carnagarin R., Dharmarajan A. M., Dass C. R. (2015). PEDF-induced alteration of metabolism leading to insulin resistance. Mol. Cell. Endocrinol. 401 98–104. 10.1016/j.mce.2014.11.006 PubMed DOI

Chen S., Kammerl I. E., Vosyka O., Baumann T., Yu Y., Wu Y., et al. (2016). Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ. 23 1026–1037. 10.1038/cdd.2016.3 PubMed DOI PMC

Cho Y., Kim J., Kim M., Park S., Koh S., Ahn H., et al. (2012). Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One 7:e32778. 10.1371/journal.pone.0032778 PubMed DOI PMC

Córdova L., Loi F., Lin T., Gibon E., Pajarinen J., Nabeshima A., et al. (2017). SB1 4. CCL2, CCL5 and IGF-1 participate in the immunomodulation of osteogenesis during m1/m2 transition in vitro. J. Biomed. Mater. Res. A 46 1247–1262. PubMed PMC

Delsite R., Kachhap S., Anbazhagan R., Gabrielson E., Singh K. K. (2002). Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol. Cancer 1 1–10. PubMed PMC

Dong L., Kovarova J., Bajzikova M., Bezawork-Geleta A., Svec D., Endaya B., et al. (2017). Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 6:e22187. PubMed PMC

Duborjal H., Beugnot R., Mousson de Camaret B., Issartel J. P. (2002). Large functional range of steady-state levels of nuclear and mitochondrial transcripts coding for the subunits of the human mitochondrial OXPHOS system. Genome Res. 12 1901–1909. 10.1101/gr.194102 PubMed DOI PMC

DuPré S. A., Redelman D., Hunter K. W. (2007). The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int. J. Exp. Pathol. 88 351–360. 10.1111/j.1365-2613.2007.00539.x PubMed DOI PMC

Eccles D. A. (2019). Demultiplexing Nanopore reads with LAST V. 6 1 Malaghan Institute of Medical Research (NZ). Meyrin: Zenodo, 1–6.

Evans D. R., Guy H. I. (2004). Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J. Biol. Chem. 279 33035–33038. 10.1074/jbc.r400007200 PubMed DOI

Gattu A. K., Swenson E. S., Iwakiri Y., Samuel V. T., Troiano N., Berry R., et al. (2013). Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity and reduced bone mineral content. FASEB J. 27 4384–4394. 10.1096/fj.13-232900 PubMed DOI PMC

Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., et al. (2016). Transfer of mitochondria from astrocytes to neurons after stroke Neurons can release damaged mitochondria and transfer them to astrocytes for disposal and recycling. Nat. Publ. Gr. 535 551–555. 10.1038/nature18928 PubMed DOI PMC

He J., Ford H. C., Carroll J., Ding S., Fearnley I. M., Walker J. E. (2017). Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. U.S.A. 114 3409–3414. 10.1073/pnas.1702357114 PubMed DOI PMC

Herst P. M., Dawson R., Berridge M. (2018a). Intercellular communication in tumor biology: a role for mitochondrial transfer. Front. Oncol. 8:e344. 10.3389/fonc.2018.00344 PubMed DOI PMC

Herst P. M., Grasso C., Berridge M. V. (2018b). Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer Metastasis Rev. 37 643–653. 10.1007/s10555-018-9769-2 PubMed DOI

Islam M., Das S., Emin M. T., Wei M., Sun L., Westphalen K., et al. (2012). Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18 759–765. 10.1038/nm.2736 PubMed DOI PMC

Katanov C., Lerrer S., Liubomirski Y., Leider-Trejo L., Meshel T., Bar J., et al. (2015). Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res. Ther. 6 1–17. PubMed PMC

King M. P., Attardi G. (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246 500–503. 10.1126/science.2814477 PubMed DOI

Kuan E. L., Ziegler S. F. (2018). A tumor-myeloid cell axis, mediated via the cytokines IL-1α and TSLP, promotes the progression of breast cancer. Nat. Immunol. 19 366–374. 10.1038/s41590-018-0066-6 PubMed DOI PMC

Kurt R. A., Baher A., Wisner K. P., Tackitt S., Urba W. J. (2001). Chemokine receptor desensitization in tumor-bearing mice. Cell. Immunol. 207 81–88. 10.1006/cimm.2000.1754 PubMed DOI

Larm J. A., Vaillant F., Linnane A. W., Lawen A. (1994). Up-regulation of the plasma membrane oxidoreductase as a prerequisite for viability of human Nawala Ro cells. J. Biol. Chem. 269 30097–30100. PubMed

Li K., Neufer P. D., Williams R. S. (1995). Nuclear responses to depletion of mitochondrial DNA in human cells. Am. J. Physiol. Cell Physiol. 269 38–35. PubMed

Liubomirski Y., Lerrer S., Meshel T., Rubinstein-Achiasaf L., Morein D., Wiemann S., et al. (2019). Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Front. Immunol. 10:757. 10.3389/fimmu.2019.00757 PubMed DOI PMC

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 1–21. PubMed PMC

Madera L., Greenshields A., Coombs M. R. P., Hoskin D. W. (2015). 4T1 murine mammary carcinoma cells enhance macrophage-mediated innate inflammatory responses. PLoS One 10:e0133385. 10.1371/journal.pone.0133385 PubMed DOI PMC

Magda D., Lecane P., Prescott J., Thiemann P., Ma X., Dranchak P. K., et al. (2008). mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 9:521. 10.1186/1471-2164-9-521 PubMed DOI PMC

Marlein C., Zaitseva L., Piddock R., Robinson S., Edwards D., Shafat M., et al. (2017). NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130 1649–1660. 10.1182/blood-2017-03-772939 PubMed DOI

Marlein C. R., Piddock R. E., Mistry J. J., Zaitseva L., Hellmich C., Horton R. H., et al. (2019). CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 79 2285–2297. 10.1158/0008-5472.can-18-0773 PubMed DOI

Mineri R., Pavelka N., Fernandez-Vizarra E., Ricciardi-Castagnoli P., Zeviani M., Tiranti V. (2009). How do human cells react to the absence of mitochondrial DNA? PLoS One 4:e5713. 10.1371/journal.pone.0005713 PubMed DOI PMC

Noerholm M., Bentink S., Strand M., Ter-Ovanesyan D., Lundin E., Ohlson N., et al. (2011). RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and ovarian cancer. Mol. Cancer Ther. 10:C140. PubMed PMC

Obeid E., Nanda R., Fu Y. X., Olopade O. I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). Int. J. Oncol. 43 5–12. 10.3892/ijo.2013.1938 PubMed DOI PMC

Osswald M., Solecki G., Wick W., Winkler F. (2016). A malignant cellular network in gliomas: potential clinical implications. Neuro Oncol. 18 479–485. 10.1093/neuonc/now014 PubMed DOI PMC

Owen J. L., Criscitiello M. F., Libreros S., Garcia-Areas R., Guthrie K., Torroella-Kouri M., et al. (2011). Expression of the inflammatory chemokines CCL2, CCL5 and CXCL2 and the receptors CCR1-3 and CXCR2 in T lymphocytes from mammary tumor-bearing mice. Cell Immunol. 270 172–182. 10.1016/j.cellimm.2011.05.004 PubMed DOI PMC

Soria G., Ben-Baruch A. (2000). The inflammatory chemokines CCL2, and CCL5 in breast cancer. Cancer Lett. 267 271–285. 10.1016/j.canlet.2008.03.018 PubMed DOI

Spees J., Olson S., Whitney M., Prockop D. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U.S.A. 103 1283–1288. 10.1073/pnas.0510511103 PubMed DOI PMC

Tan A., Baty J., Dong L., Bezawork-Geleta A., Endaya B., Goodwin J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21 81–94. 10.1016/j.cmet.2014.12.003 PubMed DOI

Vitiello P. F., Shainheit M. G., Allison E. M., Adler E. P., Kurt R. A. (2004). Impact of tumor-derived CCL2 on T cell effector function. Immunol. Lett. 91 239–245. 10.1016/j.imlet.2003.12.009 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...