• This record comes from PubMed

Residual OXPHOS is required to drive primary and metastatic lung tumours in an orthotopic breast cancer model

. 2024 ; 14 () : 1362786. [epub] 20240501

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

BACKGROUND: Fast adaptation of glycolytic and mitochondrial energy pathways to changes in the tumour microenvironment is a hallmark of cancer. Purely glycolytic ρ0 tumour cells do not form primary tumours unless they acquire healthy mitochondria from their micro-environment. Here we explored the effects of severely compromised respiration on the metastatic capability of 4T1 mouse breast cancer cells. METHODS: 4T1 cell lines with different levels of respiratory capacity were generated; the Seahorse extracellular flux analyser was used to evaluate oxygen consumption rates, fluorescent confocal microscopy to assess the number of SYBR gold-stained mitochondrial DNA nucleoids, and the presence of the ATP5B protein in the cytoplasm and fluorescent in situ nuclear hybridization was used to establish ploidy. MinION nanopore RNA sequence analysis was used to compare mitochondrial DNA transcription between cell lines. Orthotopic injection was used to determine the ability of cells to metastasize to the lungs of female Balb/c mice. RESULTS: OXPHOS-deficient ATP5B-KO3.1 cells did not generate primary tumours. Severely OXPHOS compromised ρ0D5 cells generated both primary tumours and lung metastases. Cells generated from lung metastasis of both OXPHOS-competent and OXPHOS-compromised cells formed primary tumours but no metastases when re-injected into mice. OXPHOS-compromised cells significantly increased their mtDNA content, but this did not result in increased OXPHOS capacity, which was not due to decreased mtDNA transcription. Gene set enrichment analysis suggests that certain cells derived from lung metastases downregulate their epithelial-to-mesenchymal related pathways. CONCLUSION: In summary, OXPHOS is required for tumorigenesis in this orthotopic mouse breast cancer model but even very low levels of OXPHOS are sufficient to generate both primary tumours and lung metastases.

See more in PubMed

Ganesh K, Massagué J. Targeting metastatic cancer. Nat Med. (2021) 27:34–44. doi: 10.1038/s41591-020-01195-4 PubMed DOI PMC

Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab. (2021) 33:1307–21. doi: 10.1016/j.cmet.2021.04.002 PubMed DOI PMC

Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The role of the pentose phosphate pathway in diabetes and cancer. Front Endocrinol. (2020) 11:1–11. doi: 10.3389/fendo.2020.00365 PubMed DOI PMC

Quek LE, van Geldermalsen M, Guan YF, Wahi K, Mayoh C, Balaban S, et al. . Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene. (2022) 41:4066–78. doi: 10.1038/s41388-022-02408-5 PubMed DOI PMC

Li S, Zeng H, Fan J, Wang F, Xu C, Li Y, et al. . Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol. (2023) 210:115464. doi: 10.1016/j.bcp.2023.115464 PubMed DOI

Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. (2021) 21:162–80. doi: 10.1038/s41568-020-00320-2 PubMed DOI PMC

Mosier JA, Schwager SC, Boyajian DA, Reinhart-King CA. Cancer cell metabolic plasticity in migration and metastasis. Clin Exp Metastasis. (2021) 38:343–59. doi: 10.1007/s10585-021-10102-1 PubMed DOI

Xie S, Pan J, Xu J, Zhu W, Qin L. The critical function of metabolic reprogramming in cancer metastasis. Aging Cancer. (2022) 3:20–43. doi: 10.1002/aac2.12044 DOI

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery. (2022) 12:31–46. doi: 10.1158/2159-8290.CD-21-1059 PubMed DOI

Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. (2020) 60:14–7. doi: 10.1016/j.semcancer.2019.08.012 PubMed DOI

Tan A, Baty J, Dong L, Bezawork-Geleta A, Endaya B, Goodwin J, et al. . Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. (2015) 21:81–94. doi: 10.1016/j.cmet.2014.12.003 PubMed DOI

Bajzikova M, Kovarova J, Coelho AR, Boukalova S, Oh S, Rohlenova K, et al. . Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. (2019) 29:399–416. doi: 10.1016/j.cmet.2018.10.014 PubMed DOI PMC

Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta - Mol Basis Dis. (2020) 1866:165759. doi: 10.1016/j.bbadis.2020.165759 PubMed DOI

Shalem O, Sanjana N, Hartenian E, Shi X, Scott D, Heckl D, et al. . Genome-scale CRISPR-cas9 knockout screening in human cells. Science. (2014) 343:84–7. doi: 10.1126/science.1247005 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. . Fiji: an open-source platform for biological-image analysis. Nat Methods. (2012) 9:676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I, Friman O, et al. . CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. (2006) 7:R100. doi: 10.1186/gb-2006-7-10-r100 PubMed DOI PMC

Eccles DA. Demultiplexing nanopore reads with LAST V. 6 1 Malaghan Institute Med Res (NZ). (2019), 1–6. doi: 10.5281/zenodo.2535894 DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:1–21. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Zhu A, Ibrahim JG, Love MI. Heavy-Tailed prior distributions for sequence count data: Removing the noise and preserving large differences. Bioinformatics. (2019) 35:2084–92. doi: 10.1093/bioinformatics/bty895 PubMed DOI PMC

Benjamini Y, Hockberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B. (1995) 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x DOI

Lawce H, Sanford J. Fluorescence in situ hybridization (FISH); Chapter 16. In: Arsham MS, Barch MJ, Lawce H, editors. The AGT cytogenetics laboratory manual, 4th ed. Hoboken, New Jersey: Wiley; (2017). p. 717–831.

Prole DL, Chinnery PF, Jones NS. Visualizing, quantifying, and manipulating mitochondrial DNA in vivo. J Biol Chem. (2020) 295:17588–601. doi: 10.1074/jbc.REV120.015101 PubMed DOI PMC

Annuario E, Ng K, Vagnoni A. High-resolution imaging of mitochondria and mitochondrial nucleoids in differentiated SH-SY5Y cells. Methods Mol Biol. (2022) 2431:291–310. doi: 10.1007/978-1-0716-1990-2_15 PubMed DOI

Grasso C, Eccles DA, Boukalova S, Fabre MS, Dawson RH, Neuzil J, et al. . Mitochondrial DNA affects the expression of nuclear genes involved in immune and stress responses in a breast cancer model. Front Physiol. (2020) 11:1–12. doi: 10.3389/fphys.2020.543962 PubMed DOI PMC

Liberzon A, Birger C, Ghandi M, Jill P, Tamayo P, Jolla L, et al. . The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. (2015) 1:417–25. doi: 10.1016/j.cels.2015.12.004 PubMed DOI PMC

Borcherding N, Brestoff JR. The power and potential of mitochondria transfer. Nature. (2023) 623:283–91. doi: 10.1038/s41586-023-06537-z PubMed DOI PMC

Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. (2017) 11:805–23. doi: 10.1002/1878-0261.12095 PubMed DOI PMC

Schulze A, Oshi M, Endo I, Takabe K. Myc targets scores are associated with cancer aggressiveness and poor survival in er-positive primary and metastatic breast cancer. Int J Mol Sci. (2020) 21:1–13. doi: 10.3390/ijms21218127 PubMed DOI PMC

Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res. (2018) 37:1–15. doi: 10.1186/s13046-018-0730-6 PubMed DOI PMC

Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. Adv Cancer Biol - Metastasis. (2022) 5:100055. doi: 10.1016/j.adcanc.2022.100055 DOI

O’Connell I, Dongre A. Immune checkpoint blockade therapy for breast cancer: lessons from epithelial–mesenchymal transition. Mol Diagnosis Ther. (2023) 27:433–44. doi: 10.1007/s40291-023-00652-3 PubMed DOI PMC

Zimmerli D, Brambillasca CS, Talens F, Bhin J, Linstra R, Romanens L, et al. . MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. (2022) 13. doi: 10.1038/s41467-022-34000-6 PubMed DOI PMC

Gao Fy, Li X, Xu K, Wang Rt, Guan Xx. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal. (2023) 21:1–8. doi: 10.1186/s12964-023-01043-1 PubMed DOI PMC

Zhang R, Liu Q, Li T, Liao Q, Zhao Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int. (2019) 19:1–12. doi: 10.1186/s12935-019-1027-3 PubMed DOI PMC

Morandi A, Taddei ML, Chiarugi P, Giannoni E. Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors. Front Oncol. (2017) 7:1–19. doi: 10.3389/fonc.2017.00040 PubMed DOI PMC

Sun X, Wang M, Wang M, Yao L, Li X, Dong H, et al. . Exploring the metabolic vulnerabilities of epithelial–mesenchymal transition in breast cancer. Front Cell Dev Biol. (2020) 8:1–7. doi: 10.3389/fcell.2020.00655 PubMed DOI PMC

Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol. (2023) 14:1–12. doi: 10.3389/fimmu.2023.1190333 PubMed DOI PMC

Shen Z, Zhu D, Liu J, Chen J, Liu Y, Hu C, et al. . 27-Hydroxycholesterol induces invasion and migration of breast cancer cells by increasing MMP9 and generating EMT through activation of STAT-3. Environ Toxicol Pharmacol. (2017) 51:1–8. doi: 10.1016/j.etap.2017.02.001 PubMed DOI

Lu J, Chen S, Bai X, Liao M, Qiu Y, Zheng LL, et al. . Targeting cholesterol metabolism in Cancer: From molecular mechanisms to therapeutic implications. Biochem Pharmacol. (2023) 218:115907. doi: 10.1016/j.bcp.2023.115907 PubMed DOI

Chatterjee R, Chatterjee J. ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol. (2020) 99:151073. doi: 10.1016/j.ejcb.2020.151073 PubMed DOI

Lee SY, Ju MK, Jeun HM, Lee YJ, Kim CH, Park HG, et al. . Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol Med Rep. (2019) 20:2339–46. doi: 10.3892/mmr PubMed DOI

Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, et al. . Oxidative stress regulation and related metabolic pathways in epithelial–mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther. (2023) 14:1–19. doi: 10.1186/s13287-023-03571-6 PubMed DOI PMC

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. (2009) 417:1–13. doi: 10.1042/BJ20081386 PubMed DOI PMC

Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, et al. . Histone methyltransferase hSETD1A is a novel regulator of metastasis in breast cancer. Mol Cancer Res. (2015) 13:461–9. doi: 10.1158/1541-7786.MCR-14-0389 PubMed DOI

Chen JF, Yan Q. The roles of epigenetics in cancer progression and metastasis. Biochem J. (2021) 478:3373–93. doi: 10.1042/BCJ20210084 PubMed DOI PMC

Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, et al. . Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med. (2023) 55:1357–70. doi: 10.1038/s12276-023-01020-1 PubMed DOI PMC

Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev. (2023) 42:1071–112. doi: 10.1007/s10555-023-10120-3 PubMed DOI PMC

Wu J, Feng J, Zhang Q, He Y, Xu C, Wang C, et al. . Epigenetic regulation of stem cells in lung cancer oncogenesis and therapy resistance. Front Genet. (2023) 14:1–11. doi: 10.3389/fgene.2023.1120815 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...