A multiphase CMAQ version 5.0 adjoint
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
Grantová podpora
EPA999999
Intramural EPA - United States
PubMed
33343831
PubMed Central
PMC7745733
DOI
10.5194/gmd-13-2925-2020
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM2.5) affect public health across the US.
Air Health Effects Division Health Canada Ottawa ON K1A 0K9 Canada
Atmospheric and Environmental Systems Modeling Division U S EPA Research Triangle Park NC 27711 USA
Civil Architectural and Environmental Engineering Drexel University Philadelphia PA 19104 USA
Department of Chemical and Biochemical Engineering University of Iowa Iowa City IA 52242 USA
Department of Civil and Environmental Engineering Carleton University Ottawa ON K1S 5B6 Canada
Department of Earth and Atmospheric Sciences University of Houston Houston TX 77204 USA
Institute of Computer Science of the Czech Academy of Sciences Prague 182 07 Czech Republic
Mechanical Engineering Department University of Colorado Boulder CO 80309 USA
SAIC Stennis Space Center MS 39529 USA
School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA 30331 USA
School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA 30331 USA
Zobrazit více v PubMed
Anderson WK and Nielsen E: Sensitivity Analysis for Navier–Stokes Equations on Unstructured Grids Using Complex Variables, AIAA J, 39, 56–63, 10.2514/2.1270, 2001. DOI
Bartholomew-Biggs MC: Using forward accumulation for automatic differentiation of implicitly-defined functions, Comput. Optim. Appl, 9, 65–84, 10.1023/A:1018382103801, 1998. DOI
Binkowski FS and Roselle SJ: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description, J. Geophys. Res.-Atmos, 108, 4183, 10.1029/2001JD001409, 2003. DOI
Brook RD, Rajagopalan S, Brook JR, Pope CA III, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr., Whitsel L, and Kaufman JD: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association, Circ, 121, 2331–2378, 10.1161/CIR.0b013e3181dbece1, 2010. PubMed DOI
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA III, Apte JS, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim SS, Kan H, Walker KD, Thurston GD, Hayes RB, Lim CC, Turner MC, Jerrett M, Krewski D, Gapstur SM, Diver WR, Ostro B, Goldberg D, Crouse DL, Martin RV, Peters P, Pinault L, Tjepkema M, van Donkelaar A, Villeneuve PJ, Miller AB, Yin P, Zhou M, Wang L, Janssen NAH, Marra M, Atkinson RW, Tsang H, Quoc Thach T, Cannon JB, Allen RT, Hart JE, Laden F, Cesaroni G, Forastiere F, Weinmayr G, Jaensch A, Nagel G, Concin H, and Spadaro JV: Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter, P. Natl. Acad. Sci. USA, 115, 9592–9597, 10.1073/pnas.1803222115, 2018. PubMed DOI PMC
Byun DW: Dynamically Consistent Formulations in Meteorological and Air Quality Models for Multi-Scale Atmospheric Applications, Part I: Governing Equations in Generalized Coordinate System, J. Atmos. Sci, 56, 3789–3807, 10.1175/15200469(1999)056<3789:DCFIMA>2.0.CO;2, 1999. DOI
Byun DW and Schere KL: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mec. Rev, 59, 51–77, 10.1115/1.2128636, 2006. DOI
Capps SL, Henze DK, Hakami A, Russell AG, and Nenes A: ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA, Atmos. Chem. Phys, 12, 527–543, 10.5194/acp-12-527-2012, 2012. DOI
Carmichael GR, Sandu A, Chai T, Daescu DN, Constantinescu EM, and Tang Y: Predicting air quality: improvements through advanced methods to integrate models and measurements, J. Comput. Phys, 227, 3540–3571, 10.1016/j.jcp.2007.02.024, 2008. DOI
Cohan DS, Hakami A, Hu Y, and Russell AG: Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis, Environ. Sci. Technol, 39, 6739–6748, 10.1021/es048664m, 2005. PubMed DOI
Colella P and Woodward PR: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, J. Comput. Phys. 54, 174–201, 10.1016/0021-9991(84)90143-8, 1984. DOI
Constantin BV and Barrett SR: Application of the complex step method to chemistry-transport modeling. Atmos. Environ, 99, 457–465, 10.1016/j.atmosenv.2014.10.017, 2014. DOI
Crouse DL, Peters PA, van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion O, Khan S, Atari DO, Jerrett M, Pope CA III, and Brauer M: Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study, Environ. Health Perspect, 120, 708–714, 10.1289/ehp.1104049, 2012. PubMed DOI PMC
Crouse DL, Peters PA, Hystad P, Brook JR, van Donkelaar A, Martin RV, Villeneuve PJ, Jerrett M, Goldberg MS, Pope CA III, and Brauer M: Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC), Environ. Health Perspect, 123, 1180–1186, 10.1289/ehp.1409276, 2015. PubMed DOI PMC
Damian V, Sandu A, Damian M, Potra F, and Carmichael GR: The kinetic preprocessor KPP-a software environment for solving chemical kinetics, Comput. Chem. Eng, 26, 1567–1579, 10.1016/S0098-1354(02)00128-X, 2002. DOI
Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, and Schwartz JD: Air pollution and mortality in the Medicare population, N. Engl. J. Med, 376, 2513–2522, 10.1056/NEJMoa1702747, 2017. PubMed DOI PMC
Dubovik O, Lapyonok T, Kaufman YJ, Chin M, Ginoux P, Kahn RA, and Sinyuk A: Retrieving global aerosol sources from satellites using inverse modeling, Atmos. Chem. Phys, 8, 209–250, 10.5194/acp-8-209-2008, 2008. DOI
Dunker AM, Yarwood G, Ortmann JP, and Wilson GM: The decoupled direct method for sensitivity analysis in a three-dimensional air quality model implementation, accuracy, and efficiency, Environ. Sci. Technol, 36, 2965–2976, 10.1021/es0112691, 2002. PubMed DOI
Elbern H, Schmidt H, and Ebel A: Variational data assimilation for tropospheric chemistry modeling, J. Geophys. Res.-Atmos, 102, 15967–1598, 10.1029/97JD01213, 1997. DOI
Elbern H, Schmidt H, Talagrand O, and Ebel A: 4D-variational data assimilation with an adjoint air quality model for emission analysis, Environ. Model. Softw, 15, 539–548, 10.1016/S1364-8152(00)00049-9, 2000. DOI
ENVIRON: Use’s Guide, Comprehensive Air Quality Model with Extensions (CAMx), Version 7.00, ENVIRON International Corporation, Novato, CA, available at: http://www.camx.com (last access: 23 June 2020), 2020.
Errico RM: What is an adjoint model?, B. Am. Meteorol. Soc, 78, 2577–2591, 10.1175/15200477(1997)078<2577:WIAAM>2.0.CO;2, 1997. DOI
Fahey KM, Carlton AG, Pye HOT, Baek J, Hutzell WT, Stanier CO, Baker KR, Appel KW, Jaoui M, and Offenberg JH: A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1, Geosci. Model Dev, 10, 1587–1605, 10.5194/gmd-10-1587-2017, 2017. PubMed DOI PMC
Fiore AM, Naik V, Spracklen DV, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith PJ, Cionni I, Collins WJ, Dalsøren S, Eyring V, Folberth GA, Ginoux P, Horowitz LW, Josse B, Lamarque J-F, MacKenzie IA, Nagashima T, O’Connor FMO, Righi M, Rumbold ST, Shindell DT, Skeie RB, Sudo K, Szopa S, Takemura T, and Zeng G: Global air quality and climate, Chem. Soc. Rev, 41, 6663–6683, 10.1039/C2CS35095E, 2012. PubMed DOI
Fisher M and Lary DJ: Lagrangian four-dimensional variational data assimilation of chemical species, Q. J. Roy. Meteorol. Soc, 121, 1681–170, 10.1002/qj.49712152709, 1995. DOI
Foley KM, Roselle SJ, Appel KW, Bhave PV, Pleim JE, Otte TL, Mathur R, Sarwar G, Young JO, Gilliam RC, Nolte CG, Kelly JT, Gilliland AB, and Bash JO: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev, 3, 205–226, 10.5194/gmd-3-205-2010, 2010. DOI
Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H,Facchini MC, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik JG, Spracklen DV, Vignati E, Wild M, Williams M, and Gilardoni S: Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys, 15, 8217–8299, 10.5194/acp15-8217-2015, 2015. DOI
Giering R: Tangent linear and Adjoint Model Compiler, Users manual 1.4, available at: http://www.autodiff.com/tamc (last access: 23 June 2020), 1999.
Giering R and Kaminski T: Recipes for adjoint code construction, ACM Trans. Math. Softw, 24, 437–474, 10.1145/293686.293695, 1998. DOI
Giles MB and Pierce NA: An introduction to the adjoint approach to design, Flow Turbul. Combust, 65, 393–415, 10.1023/A:1011430410075, 2000. DOI
Giles MB, Duta MC, Müller JD, and Pierce NA: Algorithm developments for discrete adjoint methods, AIAA J, 41, 198–205, 10.2514/2.1961, 2003. DOI
Gou T and Sandu A: Continuous versus discrete advection adjoints in chemical data assimilation with CMAQ, Atmos. Environ, 45, 4868–4881, 10.1016/j.atmosenv.2011.06.015, 2011. DOI
Griewank A: A mathematical view of automatic differentiation, Acta Num, 12, 321–398, 10.1017/S0962492902000132, 2003. DOI
Griewank A: Who Invented the Reverse Mode of Differentiation?, Documenta Math., Extra Volume ISMP, 389–400, 2012.
Hakami A, Odman MT, and Russell AG: High-order, direct sensitivity analysis of multidimensional air quality models, Environ. Sci. Technol, 37, 2442–2452, 10.1021/es020677h, 2003. PubMed DOI
Hakami A, Henze DK, Seinfeld JH, Chai T, Tang Y, Carmichael GR, and Sandu A: Adjoint inverse modeling of black carbon during the Asian Pacific Regional Aerosol Characterization Experiment, J. Geophys. Res.-Atmos, 110, D14301, 10.1029/2004JD005671, 2005. DOI
Hakami A, Henze DK, Seinfeld JH, Singh K, Sandu A, Kim S, Byun D, and Li Q: The adjoint of CMAQ, Environ. Sci. Technol, 41, 7807–7817, 10.1021/es070944p, 2007. PubMed DOI
Hascoët L and Pascual V: The Tapenade Automatic Differentiation tool: principles, model, and specification, ACM Trans. Math. Softw, 39, 20, 10.1145/2450153.2450158, 2013. DOI
Henze DK, Seinfeld JH, Liao W, Sandu A, and Carmichael GR: Inverse modeling of aerosol dynamics: condensational growth, J. Geophys. Res.-Atmos, 109, D14201, 10.1029/2004JD004593, 2004. DOI
Henze DK, Hakami A, and Seinfeld JH: Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys, 7, 2413–2433, 10.5194/acp-7-2413-2007, 2007. DOI
Henze DK, Shindell DT, Akhtar F, Spurr RJ, Pinder RW, Loughlin D, Kopacz M, Singh K, and Shim C: Spatially refined aerosol direct radiative forcing efficiencies, Environ. Sci. Technol, 46, 9511–9518, 10.1021/es301993s, 2012. PubMed DOI
Huneeus N, Boucher O, and Chevallier F: Simplified aerosol modeling for variational data assimilation, Geosci. Model Dev, 2, 213–229, 10.5194/gmd-2-213-2009, 2009. DOI
Iott J, Haftka RT, and Adelman HM: Selecting step sizes in sensitivity analysis by finite differences, NASA TM-86382, 1985.
Jacobson MZ: Fundamentals of Atmospheric Modeling, Cambridge University Press, New York, 2005.
Karydis VA, Capps SL, Russell AG, and Nenes A: Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters, Atmos. Chem. Phys, 12, 9041–9055, 10.5194/acp-12-9041-2012, 2012. DOI
Koo B, Dunker AM, and Yarwood G: Implementing the decoupled direct method for sensitivity analysis in a particulate matter air quality model, Environ. Sci Technol, 41, 2847–2854, 10.1021/es0619962, 2007. PubMed DOI
Koo B, Wilson GM, Morris RE, Dunker AM, and Yarwood G: Comparison of source apportionment and sensitivity analysis in a particulate matter air quality model, Environ. Sci. Technol, 43, 6669–6675, 10.1021/es9008129, 2009. PubMed DOI
Koplitz SN, Mickley LJ, Marlier ME, Buonocore JJ, Kim PS, Liu T, Sulprizio MP, DeFries RS, Jacob DJ, Schwartz J, and Pongsiri M: Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure, Environ. Res. Lett, 11, 094023, 10.1088/17489326/11/9/094023,2016. DOI
Lacey FG, Henze DK, Lee CJ, van Donkelaar A, and Martin RV, Transient climate and ambient health impacts due to national solid fuel cookstove emissions, P. Natl. Acad. Sci. USA, 114, 1269–1274, 10.1073/pnas.1612430114, 2017. PubMed DOI PMC
Lee CJ, Martin RV, Henze DK, Brauer M, Cohen A, and van Donkelaar A: Response of global particulate-matter-related mortality to changes in local precursor emissions, Environ. Sci. Technol, 49, 4335–4344, 10.1021/acs.est.5b00873, 2015. PubMed DOI
Martien PT and Harley RA: Adjoint sensitivity analysis for a three-dimensional photochemical model: application to Southern California, Environ. Sci. Technol, 40, 4200–4210, 10.1021/es051026z, 2006. PubMed DOI
McRae GJ, Goodin WR, and Seinfeld JH: Numerical solution of the atmospheric diffusion equation for chemically reacting flows, J. Comput. Phys, 45, 1–42, 10.1016/0021-9991(82)90101-2, 1982. DOI
Mesbah SM, Hakami A, and Schott S: Improving NOx cap-and-trade system with adjoint-based emission exchange rates, Environ. Sci. Technol, 46, 11905–11912, 10.1021/es302406y, 2012. PubMed DOI
Napelenok SL, Cohan DS, Hu Y, and Russell AG: Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM), Atmos. Environ, 40, 6112–6121, 10.1016/j.atmosenv.2006.05.039, 2006. DOI
National Emissions Inventory Collaborative: 2016v1 Emissions Modeling Platform, available at: http://views.cira.colostate.edu/wiki/wiki/10202 (last access: 23 June 2020), 2019.
Navon IM: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynam. Atmos. Ocean, 27, 55–79, 10.1016/S0377-0265(97)00032-8, 1997. DOI
Nenes A, Pandis SN, and Pilinis C: ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem, 4, 123–152, 10.1023/A:1009604003981, 1998. DOI
Pappin AJ and Hakami A: Attainment vs exposure: ozone metric responses to source-specific NOx controls using adjoint sensitivity analysis, Environ. Sci. Technol, 47, 13519–13527, 10.1021/es4024145, 2013. PubMed DOI
Pappin AJ, Mesbah SM, Hakami A, and Schott S: Diminishing returns or compounding benefits of air pollution control? The case of NOx and ozone, Environ. Sci. Technol, 49, 9548–9556, 10.1021/acs.est.5b00950, 2015. PubMed DOI
Pappin AJ, Hakami A, Blagden P, Nasari M, Szyszkowicz M, and Burnett RT: Health benefits of reducing NOx emissions in the presence of epidemiological and atmospheric nonlinearities, Environ. Res. Lett, 11, 064015, 10.1088/1748-9326/11/6/064015, 2016. DOI
Park S-Y, Kim D-H, Lee S-H, and Lee HW: Variational data assimilation for the optimized ozone initial state and the short-time forecasting, Atmos. Chem. Phys, 16, 3631–3649, 10.5194/acp-16-3631-2016, 2016. DOI
Pinault LL, Weichenthal S, Crouse DL, Brauer M, Erickson A, van Donkelaar A, Martin RV, Hystad P, Chen H, Finès P, and Brook JR: Associations between fine particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort, Environ. Res, 159, 406–415, 10.1016/j.envres.2017.08.037, 2017. PubMed DOI
Pleim JE and Chang JS: A non-local closure model for vertical mixing in the convective boundary layer, Atmos. Environ, 26A, 965–981, 10.1016/0960-1686(92)90028-J, 1992. DOI
Qi L, Li Q, Henze DK, Tseng H-L, and He C: Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008, Atmos. Chem. Phys, 17, 9697–9716, 10.5194/acp-17-9697-2017, 2017. DOI
Resler J, Eben K, Jurus P, and Liczki J: Inverse modeling of emissions and their time profiles, Atmos. Pollut. Res, 1, 288–295, 10.5094/APR.2010.036, 2010. DOI
Sandu A, Daescu DN, Carmichael GR, and Chai T: Adjoint sensitivity analysis of regional air quality models, J. Comput. Phys, 204, 222–252, 10.1016/j.jcp.2004.10.011, 2005. DOI
Seinfeld JH and Pandis SN: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley, Hoboken, NJ, 2006.
Sirkes Z and Tziperman E: Finite difference of adjoint or adjoint of finite difference?, Mon. Weather Rev, 125, 3373–3378, 10.1175/15200493(1997)125<3373:FDOAOA>2.0.CO;2, 1997. DOI
Squire W and Trapp G: Using complex variables to estimate derivatives of real functions, SIAM Rev, 40, 110–112, 10.1137/S003614459631241X, 1998. DOI
Tai AP, Mickley LJ, and Jacob DJ: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change, Atmos. Environ, 44, 3976–3984, 10.1016/j.atmosenv.2010.06.060, 2010. DOI
Tai APK, Mickley LJ, Jacob DJ, Leibensperger EM, Zhang L, Fisher JA, and Pye HOT: Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate change, Atmos. Chem. Phys, 12, 3131–3145, 10.5194/acp-12-3131-2012, 2012. DOI
Talagrand O and Courtier P: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory, Q. J. Roy. Meteorol. Soc, 113, 1311–1328, 10.1002/qj.49711347812, 1987. DOI
Thuburn J and Haine TW: Adjoints of nonoscillatory advection schemes, J. Comput. Phys, 171, 616–631, 10.1006/jcph.2001.6799, 2001. DOI
Turner MC, Jerrett M, Pope CA III, Krewski D, Gapstur SM, Diver WR, Beckerman BS, Marshall JD, Su J, Crouse DL, and Burnett RT: Long-term ozone exposure and mortality in a large prospective study, Am. J. Respir. Crit. Care Med, 193, 1134–1142, 10.1164/rccm.2015081633OC, 2016. PubMed DOI PMC
Turner MD, Henze DK, Hakami A, Zhao S, Resler J, Carmichael GR, Stanier CO, Baek J, Sandu A, Russell AG, and Nenes A: Differences between magnitudes and health impacts of bc emissions across the united states using 12 km scale seasonal source apportionment, Environ. Sci. Technol, 49, 4362–4371, 10.1021/es505968b, 2015a. PubMed DOI
Turner MD, Henze DK, Capps SL, Hakami A, Zhao S, Resler J, Carmichael GR, Stanier CO, Baek J, Sandu A, and Russell AG: Premature deaths attributed to source-specific BC emissions in six urban US regions, Environ. Res. Lett, 10, 114014, 10.1088/17489326/10/11/114014, 2015b. DOI
Vukicević T, Steyskal M, and Hecht M: Properties of advectioń algorithms in the context of variational data assimilation, Mon. Weather Rev, 129, 1221–1231, 10.1175/15200493(2001)129<1221:POAAIT>2.0.CO;2, 2001. DOI
Wang KY, Lary DJ, Shallcross DE, Hall SM, and Pyle JA: A review on the use of the adjoint method in four-dimensional atmospheric-chemistry data assimilation, Q. J. Roy. Meteorol. Soc, 127, 2181–2204, 10.1002/qj.49712757616, 2001. DOI
Wang Q, Moin P, and Iaccarino G: Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation, SIAM J. Sci. Comput, 31, 2549–2567, 10.1137/080727890, 2009. DOI
West JJ, Cohen A, Dentener F, Brunekreef B, Zhu T, Armstrong B, Bell ML, Brauer M, Carmichael G, Costa DL, Dockery DW, Kleeman M, Krzyzanowski M, Künzli N, Liousse C, Lung S-CC, Martin RV, Pöschl U, Pope CA III, Roberts JM, Russell AG, and Wiedinmyer C: What we breathe impacts our health: improving understanding of the link between air pollution and health, Environ. Sci Technol., 50, 4895–4904, 10.1021/acs.est.5b03827, 2016. PubMed DOI
Yarwood G, Rao S, Yocke MA, and Whitten GZ: Updates to the carbon bond chemical mechanism: CB05, Final report to the US EPA, RT-0400675, 2005.
Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze DK, Capps SL, Fu T-M, Zhang Q, and Wang Y: Source attribution of particulate matter pollution over North China with the adjoint method, Environ. Res. Lett, 10, 084011, 10.1088/1748-9326/10/8/084011, 2015. DOI
Zhao S, Russell MG, Hakami A, Capps SL, Turner MD, Henze DK, Percell PB, Resler J, Shen H, Russell AG, Nenes A, Pappin AJ, Napelenok SL, Bash JO, Fahey KM, Carmichael GR, Stanier CO, and Chai T: CMAQ 5.0 Adjoint, available at: https://github.com/usepa/cmaq_adjoint, last access: 23 June 2020. PubMed PMC
Zhao S, Russell MG, Hakami A, Capps SL, Turner MD, Henze DK, Percell PB, Resler J, Shen H, Russell AG, Nenes A, Pappin AJ, Napelenok SL, Bash JO, Fahey KM, Carmichael GR, Stanier CO, and Chai T: CMAQ 5.0 Adjoint Input Data, Data set, Zenodo, 10.5281/zenodo.3473444, 2019. PubMed DOI PMC
A multiphase CMAQ version 5.0 adjoint