• This record comes from PubMed

Impact of chromate and dichromate on lysozyme stability: A spectroscopic and molecular docking investigation

. 2022 Jun ; 37 (6) : 876-882. [epub] 20220413

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
GF20-05789 L Czech Science Foundation

A comparative study of interaction between chicken egg white lysozyme (Lyz) with two hexavalent chromate ions; chromate and dichromate; which are prevalently known for their toxicity, was investigated using different spectroscopic techniques along with a molecular docking study. Both steady-state and time-resolved studies revealed that the addition of chromate/dichromate is responsible for strong quenching of intrinsic fluorescence in Lyz and the quenching is caused by both static and dynamic quenching mechanisms. Different binding and thermodynamic parameters were also calculated at different temperatures from the intrinsic fluorescence of Lyz. The conformational change in Lyz and thermodynamic parameters obtained during the course of interaction with chromate/dichromate were well-supported by the molecular docking results.

See more in PubMed

R. A. Anderson, Biotechnology in the Feed Industry, Nottingham University Press, Nottingham, UK 1994 267.

P. Borgs, B. Mallard, Domest. Anim. Endocrinol. 1998, 15, 431.

K. N. Jeejeebhoy, R. Chu, E. Marliss, G. R. Greenberg, A. Bruce-Robertson, Am. J. Clin. Nutr. 1977, 30, 531.

G. W. Evans, T. D. Bowman, J. Inorg. Biochem. 1992, 46, 243.

A. S. Abraham, M. Sonnenblick, M. Eini, Atherosclerosis 1982, 42, 185.

A. S. Abraham, M. Sonnenblick, M. Eini, Atherosclerosis 1982, 41, 371.

R. A. Anderson, J. Am. Coll. Nutr. 1997, 16, 404.

I. Chromium, World Health Organization, International Agency for Research on Cancer, Lyon, France 1990.

M. Costa, Crit. Rev. Toxicol. 1997, 27, 431.

J. Waterhouse, Br. J. Cancer 1975, 32, 262.

B. C. Swain, S. K. Mukherjee, J. Rout, Sakshi, P. P. Mishra, M. Mukherjee, U. Tripathy, Anal. Bioanal. Chem. 2020, 412, 2565.

Z. Gu, X. Zhu, S. Ni, Z. Su, H.-M. Zhou, Int. J. Biochem. Cell Biol. 2004, 36, 795.

W. Mai, C. Hu, Progr. Nat. Sci. 2009, 19, 837.

T. Croguennec, F. Nau, D. Molle, Y. Le Graet, G. Brule, Food Chem. 2000, 68, 29.

C. Jash, P. V. Payghan, N. Ghoshal, G. Suresh Kumar, J. Phys. Chem. B. 2014, 118, 13077.

F. Ding, G. Zhao, J. Huang, Y. Sun, L. Zhang, Eur. J. Med. Chem. 2009, 44, 4083.

H. Zhang, F. Hao, R. Liu, J. Lumin. 2013, 142, 144.

J. Wang, X. Yang, J. Wang, C. Xu, W. Zhang, R. Liu, W. Zong, New J. Chem. 2016, 40, 3738.

M. Jing, W. Song, R. Liu, Spectrochim. Acta a Mol. Biomol. Spectrosc. 2016, 164, 103.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science & Business Media, New York 2013.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, GaussView 5.0. Wallingford, E.U.A., Gaussian, Inc., Wallingford CT 2016.

D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H. J. Wolfson, Nucleic Acids Res. 2005, 33, W363.

E. Mashiach, D. Schneidman-Duhovny, N. Andrusier, R. Nussinov, H. J. Wolfson, Nucleic Acids Res. 2008, 36, W229.

N. Andrusier, R. Nussinov, H. J. Wolfson, Proteins: Struct. Funct. Bioinform. 2007, 69, 139.

A. C. Wallace, R. A. Laskowski, J. M. Thornton, Protein Eng., Des. Sel. 1995, 8, 127.

K. Bera, J. Biomol. Struct. Dyn. 2021, 1.

P. Qin, B. Su, R. Liu, Mol. BioSyst. 2012, 8, 1222.

F. Teale, G. Weber, Biochem. J. 1957, 65, 476.

A. Papadopoulou, R. J. Green, R. A. Frazier, J. Agric. Food Chem. 2005, 53, 158.

S. Soares, N. Mateus, V. De Freitas, J. Agric. Food Chem. 2007, 55, 6726.

O. K. Abou-Zied, O. I. K. al-Shihi, J. Am. Chem. Soc. 2008, 130, 10793.

J. Rout, B. C. Swain, S. Subadini, P. P. Mishra, H. Sahoo, U. Tripathy, Int. J. Biol. Macromol. 2021, 192, 564.

S. Lehrer, Biochemistry 1971, 10, 3254.

J. Rout, B. C. Swain, S. Subadini, P. P. Mishra, H. Sahoo, U. Tripathy, Int. J. Biol. Macromol. 2021, 189, 306.

P. D. Ross, S. Subramanian, Biochemistry 1981, 20, 3096.

K. S. Ghosh, B. K. Sahoo, S. Dasgupta, Chem. Phys. Lett. 2008, 452, 193.

K. Shanmugaraj, S. Anandakumar, M. Ilanchelian, Dyes Pigm. 2015, 112, 210.

T. Chen, S. Zhu, Y. Shang, C. Ge, G. Jiang, Spectrochim. Acta a Mol. Biomol. Spectrosc. 2012, 93, 125.

S. Subadini, K. Bera, J. Hritz, H. Sahoo, Colloids Surf. 2021, 202, 111696.

S. Subadini, P. R. Hota, D. P. Behera, H. Sahoo, Optical Spectroscopic and Microscopic Techniques, Springer, Singapore 2022, 19.

N. Sreerama, R. W. Woody, Anal. Biochem. 2000, 287, 252.

L. Whitmore, B. Wallace, Nucleic Acids Res. 2004, 32, W668.

S. Millan, L. Satish, K. Bera, H. Sahoo, New J. Chem. 2019, 43, 3956.

K. Bera, P. Rani, G. Kishor, S. Agarwal, A. Kumar, D. V. Singh, J. Biomol. Struct. Dyn. 2018, 36, 2938.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...