Etiology of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL): Current Directions in Research

. 2020 Dec 21 ; 12 (12) : . [epub] 20201221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33371292

Grantová podpora
P01 CA229100 NCI NIH HHS - United States
This work was supported by Allergan (prior to its acquisition by AbbVie), Dublin, Ireland Allergan

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a CD30-positive, anaplastic lymphoma kinase-negative T-cell lymphoma. Where implant history is known, all confirmed cases to date have occurred in patients with exposure to textured implants. There is a spectrum of disease presentation, with the most common occurring as a seroma with an indolent course. A less common presentation occurs as locally advanced or, rarely, as metastatic disease. Here we review the immunological characteristics of BIA-ALCL and potential triggers leading to its development. BIA-ALCL occurs in an inflammatory microenvironment with significant lymphocyte and plasma cell infiltration and a prominent Th1/Th17 phenotype in advanced disease. Genetic lesions affecting the JAK/STAT signaling pathway are commonly present. Proposed triggers for the development of malignancy include mechanical friction, silicone implant shell particulates, silicone leachables, and bacteria. Of these, the bacterial hypothesis has received significant attention, supported by a plausible biologic model. In this model, bacteria form an adherent biofilm in the favorable environment of the textured implant surface, producing a bacterial load that elicits a chronic inflammatory response. Bacterial antigens, primarily of Gram-negative origin, may trigger innate immunity and induce T-cell proliferation with subsequent malignant transformation in genetically susceptible individuals. Although much remains to be elucidated regarding the multifactorial origins of BIA-ALCL, future research should focus on prevention and treatment strategies, recognizing susceptible populations, and whether decreasing the risk of BIA-ALCL is possible.

Zobrazit více v PubMed

Keech J.A., Jr., Creech B.J. Anaplastic T-cell lymphoma in proximity to a saline-filled breast implant. Plast. Reconstr. Surg. 1997;100:554–555. doi: 10.1097/00006534-199708000-00065. PubMed DOI

Lazzeri D., Agostini T., Bocci G., Giannotti G., Fanelli G., Naccarato A.G., Danesi R., Tuccori M., Pantaloni M., D’Aniello C. ALK-1-negative anaplastic large cell lymphoma associated with breast implants: A new clinical entity. Clin. Breast Cancer. 2011;11:283–296. doi: 10.1016/j.clbc.2011.03.020. PubMed DOI

Srinivasa D.R., Miranda R.N., Kaura A., Francis A.M., Campanale A., Boldrini R., Alexander J., Deva A., Gravina P., Medeiros L.J., et al. Global adverse event reports of breast implant-associated ALCL: An international review of 40 government authority databases. Plast. Reconstr. Surg. 2017;139:1029–1039. doi: 10.1097/PRS.0000000000003233. PubMed DOI

Doren E.L., Miranda R.N., Selber J.C., Garvey P.B., Liu J., Medeiros L.J., Butler C.E., Clemens M.W. U.S. epidemiology of breast implant-associated anaplastic large cell lymphoma. Plast. Reconstr. Surg. 2017;139:1042–1050. doi: 10.1097/PRS.0000000000003282. PubMed DOI

Miranda R.N., Aladily T.N., Prince H.M., Kanagal-Shamanna R., de Jong D., Fayad L.E., Amin M.B., Haideri N., Bhagat G., Brooks G.S., et al. Breast implant-associated anaplastic large-cell lymphoma: Long-term follow-up of 60 patients. J. Clin. Oncol. 2014;32:114–120. doi: 10.1200/JCO.2013.52.7911. PubMed DOI PMC

Maisel W. Breast Implant Associated-Anaplastic Large Cell Lymphoma (BIA-ALCL)—Letter to Health Care Providers. [(accessed on 12 February 2019)]; Available online: https://www.fda.gov/MedicalDevices/Safety/LetterstoHealthCareProviders/ucm630863.htm.

Campanale A., Boldrini R., Marletta M. 22 cases of breast implant-associated ALCL: Awareness and outcome tracking from the Italian Ministry of Health. Plast. Reconstr. Surg. 2018;141:11e–19e. doi: 10.1097/PRS.0000000000003916. PubMed DOI

Cordeiro P.G., Ghione P., Ni A., Hu Q., Ganesan N., Galasso N., Dogan A., Horwitz S.M. Risk of breast implant associated anaplastic large cell lymphoma (BIA-ALCL) in a cohort of 3546 women prospectively followed long term after reconstruction with textured breast implants. J. Plast. Reconstr. Aesthetic Surg. 2020;73:841–846. doi: 10.1016/j.bjps.2019.11.064. PubMed DOI PMC

Mukhtar R.A., Holland M., Sieber D.A., Wen K.W., Rugo H.S., Kadin M.E., Bean G.R. Synchronous breast implant-associated anaplastic large cell lymphoma and invasive carcinoma: Genomic profiling and management implications. Plast. Reconstr. Surg. Glob. Open. 2019;7:e2188. doi: 10.1097/GOX.0000000000002188. PubMed DOI PMC

De Boer M., van Leeuwen F.E., Hauptmann M., Overbeek L.I.H., de Boer J.P., Hijmering N.J., Sernee A., Klazen C.A.H., Lobbes M.B.I., van der Hulst R., et al. Breast implants and the risk of anaplastic large-cell lymphoma in the breast. JAMA Oncol. 2018;4:335–341. doi: 10.1001/jamaoncol.2017.4510. PubMed DOI PMC

Oliveira A.C.P., Maino M., Zanin E.M., de Carli L., Duarte D.W., Collares M.V.M. Breast implants follow-up: Results of a cross-sectional study on patients submitted to MRI breast examinations. Aesthetic Plast. Surg. 2020 doi: 10.1007/s00266-020-01962-1. PubMed DOI

Leberfinger A.N., Behar B.J., Williams N.C., Rakszawski K.L., Potochny J.D., Mackay D.R., Ravnic D.J. Breast implant-associated anaplastic large cell lymphoma: A systematic review. JAMA Surg. 2017;152:1161–1168. doi: 10.1001/jamasurg.2017.4026. PubMed DOI

International Research Collaborations on Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) Initiated by a Scientific Meeting Organised by RIVM in Amsterdam on November the 19th, 2018. [(accessed on 12 December 2018)]; Available online: https://www.rivm.nl/en/medical-devices/silicone-breast-implants/international-meeting-on-bia-alcl.

Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC

Miranda R.N., Feldman A., Soares F. WHO Classification of Tumours: Breast Tumours. 5th ed. Volume 2 IARC; Lyon, France: 2019.

Jaffe E.S., Ashar B.S., Clemens M.W., Feldman A.L., Gaulard P., Miranda R.N., Sohani A.R., Stenzel T., Yoon S.W. Best practices guideline for the pathologic diagnosis of breast implant-associated anaplastic large-cell lymphoma. J. Clin. Oncol. 2020;38:1102–1111. doi: 10.1200/JCO.19.02778. PubMed DOI PMC

Laurent C., Delas A., Gaulard P., Haioun C., Moreau A., Xerri L., Traverse-Glehen A., Rousset T., Quintin-Roue I., Petrella T., et al. Breast implant-associated anaplastic large cell lymphoma: Two distinct clinicopathological variants with different outcomes. Ann. Oncol. 2016;27:306–314. doi: 10.1093/annonc/mdv575. PubMed DOI PMC

Quesada A.E., Medeiros L.J., Clemens M.W., Ferrufino-Schmidt M.C., Pina-Oviedo S., Miranda R.N. Breast implant-associated anaplastic large cell lymphoma: A review. Mod. Pathol. 2018;32:166–188. doi: 10.1038/s41379-018-0134-3. PubMed DOI

Di Napoli A., Pepe G., Giarnieri E., Cippitelli C., Bonifacino A., Mattei M., Martelli M., Falasca C., Cox M.C., Santino I., et al. Cytological diagnostic features of late breast implant seromas: From reactive to anaplastic large cell lymphoma. PLoS ONE. 2017;12:e0181097. doi: 10.1371/journal.pone.0181097. PubMed DOI PMC

Story S.K., Schowalter M.K., Geskin L.J. Breast implant-associated ALCL: A unique entity in the spectrum of CD30+ lymphoproliferative disorders. Oncologist. 2013;18:301–307. doi: 10.1634/theoncologist.2012-0238. PubMed DOI PMC

Kadin M.E., Adams W.P., Jr., Inghirami G., Di Napoli A. Does breast implant-associated ALCL begin as a lymphoproliferative disorder? Plast. Reconstr. Surg. 2020;145:30e–38e. doi: 10.1097/PRS.0000000000006390. PubMed DOI

Sieber D.A., Adams W.P., Jr. What’s your micromort? A patient-oriented analysis of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) Aesthetic Surg. J. 2017;37:887–891. doi: 10.1093/asj/sjx127. PubMed DOI

Clemens M.W., Horwitz S.M. NCCN consensus guidelines for the diagnosis and management of breast implant-associated anaplastic large cell lymphoma. Aesthetic Surg. J. 2017;37:285–289. doi: 10.1093/asj/sjw259. PubMed DOI

Clemens M.W., Medeiros L.J., Butler C.E., Hunt K.K., Fanale M.A., Horwitz S., Weisenburger D.D., Liu J., Morgan E.A., Kanagal-Shamanna R., et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J. Clin. Oncol. 2016;34:160–168. doi: 10.1200/JCO.2015.63.3412. PubMed DOI PMC

Hazenberg M.D., Spits H. Human innate lymphoid cells. Blood. 2014;124:700–709. doi: 10.1182/blood-2013-11-427781. PubMed DOI

Melvold R.W., Sticca R.P. Basic and tumor immunology: A review. Surg. Oncol. Clin. N. Am. 2007;16:711–735. doi: 10.1016/j.soc.2007.08.003. PubMed DOI

Warrington R., Watson W., Kim H.L., Antonetti F.R. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2011;7:S1. doi: 10.1186/1710-1492-7-S1-S1. PubMed DOI PMC

Aladily T.N., Medeiros L.J., Amin M.B., Haideri N., Ye D., Azevedo S.J., Jorgensen J.L., de Peralta-Venturina M., Mustafa E.B., Young K.H., et al. Anaplastic large cell lymphoma associated with breast implants: A report of 13 cases. Am. J. Surg. Pathol. 2012;36:1000–1008. doi: 10.1097/PAS.0b013e31825749b1. PubMed DOI

Lechner M.G., Megiel C., Church C.H., Angell T.E., Russell S.M., Sevell R.B., Jang J.K., Brody G.S., Epstein A.L. Survival signals and targets for therapy in breast implant-associated ALK—Anaplastic large cell lymphoma. Clin. Cancer Res. 2012;18:4549–4559. doi: 10.1158/1078-0432.CCR-12-0101. PubMed DOI

Eberl G., Colonna M., Di Santo J.P., McKenzie A.N. Innate lymphoid cells. Innate lymphoid cells: A new paradigm in immunology. Science. 2015;348:aaa6566. doi: 10.1126/science.aaa6566. PubMed DOI PMC

Hawse W.F., Morel P.A. An immunology primer for computational modelers. J. Pharmacokinet. Pharmacodyn. 2014;41:389–399. doi: 10.1007/s10928-014-9384-y. PubMed DOI PMC

Wolfram D., Rabensteiner E., Grundtman C., Bock G., Mayerl C., Parson W., Almanzar G., Hasenohrl C., Piza-Katzer H., Wick G. T regulatory cells and TH17 cells in peri-silicone implant capsular fibrosis. Plast. Reconstr. Surg. 2012;129:327e–337e. doi: 10.1097/PRS.0b013e31823aeacf. PubMed DOI

Kadin M.E., Morgan J., Xu H., Epstein A.L., Sieber D., Hubbard B.A., Adams W.P., Jr., Bacchi C.E., Goes J.C.S., Clemens M.W., et al. IL-13 is produced by tumor cells in breast implant associated anaplastic large cell lymphoma: Implications for pathogenesis. Hum. Pathol. 2018;78:54–62. doi: 10.1016/j.humpath.2018.04.007. PubMed DOI

Kadin M.E., Morgan J., Kouttab N., Xu H., Adams W.P., Glicksman C., McGuire P., Sieber D., Epstein A.L., Miranda R.N., et al. Comparative analysis of cytokines of tumor cell lines, malignant and benign effusions around breast implants. Aesthetic Surg. J. 2019 doi: 10.1093/asj/sjz243. PubMed DOI

Waldmann T.A., Chen J. Disorders of the JAK/STAT pathway in T Cell lymphoma pathogenesis: Implications for immunotherapy. Annu. Rev. Immunol. 2017;35:533–550. doi: 10.1146/annurev-immunol-110416-120628. PubMed DOI PMC

Bollrath J., Phesse T.J., von Burstin V.A., Putoczki T., Bennecke M., Bateman T., Nebelsiek T., Lundgren-May T., Canli O., Schwitalla S., et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102. doi: 10.1016/j.ccr.2009.01.002. PubMed DOI

Grivennikov S., Karin E., Terzic J., Mucida D., Yu G.Y., Vallabhapurapu S., Scheller J., Rose-John S., Cheroutre H., Eckmann L., et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–113. doi: 10.1016/j.ccr.2009.01.001. PubMed DOI PMC

Rebouissou S., Amessou M., Couchy G., Poussin K., Imbeaud S., Pilati C., Izard T., Balabaud C., Bioulac-Sage P., Zucman-Rossi J. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature. 2009;457:200–204. doi: 10.1038/nature07475. PubMed DOI PMC

Ambrogio C., Martinengo C., Voena C., Tondat F., Riera L., di Celle P.F., Inghirami G., Chiarle R. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 2009;69:8611–8619. doi: 10.1158/0008-5472.CAN-09-2655. PubMed DOI PMC

Laurent C., Nicolae A., Laurent C., Le Bras F., Haioun C., Fataccioli V., Amara N., Adelaide J., Guille A., Schiano J.M., et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood. 2020;135:360–370. doi: 10.1182/blood.2019001904. PubMed DOI PMC

Chen J., Zhang Y., Petrus M.N., Xiao W., Nicolae A., Raffeld M., Pittaluga S., Bamford R.N., Nakagawa M., Ouyang S.T., et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc. Natl. Acad. Sci. USA. 2017;114:3975–3980. doi: 10.1073/pnas.1700682114. PubMed DOI PMC

Tevis S.E., Hunt K.K., Miranda R.N., Lange C., Butler C.E., Clemens M.W. Differences in human leukocyte antigen expression between breast implant-associated anaplastic large cell lymphoma patients and the general population. Aesthetic Surg. J. 2019;39:1065–1070. doi: 10.1093/asj/sjz021. PubMed DOI

Montes-Mojarro I.A., Steinhilber J., Bonzheim I., Quintanilla-Martinez L., Fend F. The pathological spectrum of systemic anaplastic large cell lymphoma (ALCL) Cancers. 2018;10:107. doi: 10.3390/cancers10040107. PubMed DOI PMC

Oishi N., Brody G.S., Ketterling R.P., Viswanatha D.S., He R., Dasari S., Mai M., Benson H.K., Sattler C.A., Boddicker R.L., et al. Genetic subtyping of breast implant-associated anaplastic large cell lymphoma. Blood. 2018;132:544–547. doi: 10.1182/blood-2017-12-821868. PubMed DOI PMC

Kadin M.E., Deva A., Xu H., Morgan J., Khare P., MacLeod R.A., Van Natta B.W., Adams W.P., Jr., Brody G.S., Epstein A.L. Biomarkers provide clues to early events in the pathogenesis of breast implant-associated anaplastic large cell lymphoma. Aesthetic Surg. J. 2016;36:773–781. doi: 10.1093/asj/sjw023. PubMed DOI

Lewold S., Olsson H., Gustafson P., Rydholm A., Lidgren L. Overall cancer incidence not increased after prosthetic knee replacement: 14,551 patients followed for 66,622 person-years. Int. J. Cancer. 1996;68:30–33. doi: 10.1002/(SICI)1097-0215(19960927)68:1<30::AID-IJC6>3.0.CO;2-Y. PubMed DOI

Lidgren L. Chronic inflammation, joint replacement and malignant lymphoma. J. Bone Joint Surg. Br. 2008;90:7–10. doi: 10.1302/0301-620X.90B1.19823. PubMed DOI

Kellogg B.C., Hiro M.E., Payne W.G. Implant-associated anaplastic large cell lymphoma: Beyond breast prostheses. Ann. Plast. Surg. 2014;73:461–464. doi: 10.1097/SAP.0b013e31827faff2. PubMed DOI

Palraj B., Paturi A., Stone R.G., Alvarez H., Sebenik M., Perez M.T., Bush L.M. Soft tissue anaplastic large T-cell lymphoma associated with a metallic orthopedic implant: Case report and review of the current literature. J. Foot Ankle Surg. 2010;49:561–564. doi: 10.1053/j.jfas.2010.08.009. PubMed DOI

Yoon H.J., Choe J.Y., Jeon Y.K. Mucosal CD30-positive T-cell lymphoproliferative disorder arising in the oral cavity following dental implants: Report of the first case. Int. J. Surg. Pathol. 2015;23:656–661. doi: 10.1177/1066896915599059. PubMed DOI

Manikkam Umakanthan J., McBride C.L., Greiner T., Yuan J., Sanmann J., Bierman P.J., Lunning M.A., Bociek R.G. Bariatric implant-associated anaplastic large-cell lymphoma. J. Oncol. Pract. 2017;13:838–839. doi: 10.1200/JOP.2017.026153. PubMed DOI

Shauly O., Gould D.J., Siddiqi I., Patel K.M., Carey J. The first reported case of gluteal implant-associated anaplastic large cell lymphoma (ALCL) Aesthetic Surg. J. 2019;39:NP253–NP258. doi: 10.1093/asj/sjz044. PubMed DOI

Engberg A.K., Bunick C.G., Subtil A., Ko C.J., Girardi M. Development of a plaque infiltrated with large CD30+ T cells over a silicone-containing device in a patient with history of Sezary syndrome. J. Clin. Oncol. 2013;31:e87–e89. doi: 10.1200/JCO.2012.42.9241. PubMed DOI PMC

Hallab N.J., Samelko L., Hammond D. The inflammatory effects of breast implant particulate shedding: Comparison with orthopedic implants. Aesthetic Surg. J. 2019;39:S36–S48. doi: 10.1093/asj/sjy335. PubMed DOI PMC

Haussmann P. Long-term results after silicone prosthesis replacement of the proximal pole of the scaphoid bone in advanced scaphoid nonunion. J. Hand Surg. Br. 2002;27:417–423. doi: 10.1054/jhsb.2002.0758. PubMed DOI

Khoo C.T. Silicone synovitis. The current role of silicone elastomer implants in joint reconstruction. J. Hand Surg. Br. 1993;18:679–686. doi: 10.1016/0266-7681(93)90222-2. PubMed DOI

Hirakawa K., Bauer T.W., Culver J.E., Wilde A.H. Isolation and quantitation of debris particles around failed silicone orthopedic implants. J. Hand Surg. Am. 1996;21:819–827. doi: 10.1016/S0363-5023(96)80198-5. PubMed DOI

Pearle A.D., Crow M.K., Rakshit D.S., Wohlgemuth J., Nestor B.J. Distinct inflammatory gene pathways induced by particles. Clin. Orthop. Relat. Res. 2007;458:194–201. doi: 10.1097/BLO.0b013e3180320ae8. PubMed DOI

Fleury E.F., Rego M.M., Ramalho L.C., Ayres V.J., Seleti R.O., Ferreira C.A., Roveda D., Jr. Silicone-induced granuloma of breast implant capsule (SIGBIC): Similarities and differences with anaplastic large cell lymphoma (ALCL) and their differential diagnosis. Breast Cancer. 2017;9:133–140. doi: 10.2147/BCTT.S126003. PubMed DOI PMC

Bizjak M., Selmi C., Praprotnik S., Bruck O., Perricone C., Ehrenfeld M., Shoenfeld Y. Silicone implants and lymphoma: The role of inflammation. J. Autoimmun. 2015;65:64–73. doi: 10.1016/j.jaut.2015.08.009. PubMed DOI

Webb L.H., Aime V.L., Do A., Mossman K., Mahabir R.C. Textured breast implants: A closer look at the surface debris under the microscope. Plast. Surg. 2017;25:179–183. doi: 10.1177/2292550317716127. PubMed DOI PMC

Loch-Wilkinson A., Beath K., Knight R.J.W., Wessels W.L.F., Magnusson M., Papadopoulos T., Connell T., Lofts J., Locke M., Hopper I., et al. Breast implant-associated anaplastic large cell lymphoma in Australia and New Zealand: High surface area textured implants are associated with increased risk. Plast. Reconstr. Surg. 2017;140:645–654. doi: 10.1097/PRS.0000000000003654. PubMed DOI

Flassbeck D., Pfleiderer B., Klemens P., Heumann K.G., Eltze E., Hirner A.V. Determination of siloxanes, silicon, and platinum in tissues of women with silicone gel-filled implants. Anal. Bioanal. Chem. 2003;375:356–362. doi: 10.1007/s00216-002-1694-z. PubMed DOI

Potter M. Silicone gels induce plasmacytomas in BALB/c mice. NIH Catal. 1994;19:22–23.

Food and Drug Administration FDA Backgrounder on Platinum in Silicone Breast Implants. [(accessed on 9 July 2018)]; Available online: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/BreastImplants/UCM064040.

Brook M.A. Platinum in silicone breast implants. Biomaterials. 2006;27:3274–3286. doi: 10.1016/j.biomaterials.2006.01.027. PubMed DOI

Burkhardt B.R., Fried M., Schnur P.L., Tofield J.J. Capsules, infection, and intraluminal antibiotics. Plast. Reconstr. Surg. 1981;68:43–49. doi: 10.1097/00006534-198107000-00010. PubMed DOI

Rieger U.M., Mesina J., Kalbermatten D.F., Haug M., Frey H.P., Pico R., Frei R., Pierer G., Luscher N.J., Trampuz A. Bacterial biofilms and capsular contracture in patients with breast implants. Br. J. Surg. 2013;100:768–774. doi: 10.1002/bjs.9084. PubMed DOI

Pajkos A., Deva A.K., Vickery K., Cope C., Chang L., Cossart Y.E. Detection of subclinical infection in significant breast implant capsules. Plast. Reconstr. Surg. 2003;111:1605–1611. doi: 10.1097/01.PRS.0000054768.14922.44. PubMed DOI

Adams W.P., Jr. Capsular contracture: What is it? What causes it? How can it be prevented and managed? Clin. Plast. Surg. 2009;36:119–126. doi: 10.1016/j.cps.2008.08.007. vii. PubMed DOI

Spear S.L., Baker J.L., Jr. Classification of capsular contracture after prosthetic breast reconstruction. Plast. Reconstr. Surg. 1995;96:1119–1123; discussion 1124. doi: 10.1097/00006534-199510000-00018. PubMed DOI

Urbaniak C., Cummins J., Brackstone M., Macklaim J.M., Gloor G.B., Baban C.K., Scott L., O’Hanlon D.M., Burton J.P., Francis K.P., et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 2014;80:3007–3014. doi: 10.1128/AEM.00242-14. PubMed DOI PMC

Hieken T.J., Chen J., Hoskin T.L., Walther-Antonio M., Johnson S., Ramaker S., Xiao J., Radisky D.C., Knutson K.L., Kalari K.R., et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 2016;6:30751. doi: 10.1038/srep30751. PubMed DOI PMC

Bartsich S., Ascherman J.A., Whittier S., Yao C.A., Rohde C. The breast: A clean-contaminated surgical site. Aesthetic Surg. J. 2011;31:802–806. doi: 10.1177/1090820X11417428. PubMed DOI

Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010;8:623–633. doi: 10.1038/nrmicro2415. PubMed DOI

Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001;45:999–1007. doi: 10.1128/AAC.45.4.999-1007.2001. PubMed DOI PMC

Roilides E., Simitsopoulou M., Katragkou A., Walsh T.J. How biofilms evade host defenses. Microbiol. Spectr. 2015;3 doi: 10.1128/microbiolspec.MB-0012-2014. PubMed DOI

Deva A.K., Adams W.P., Jr., Vickery K. The role of bacterial biofilms in device-associated infection. Plast. Reconstr. Surg. 2013;132:1319–1328. doi: 10.1097/PRS.0b013e3182a3c105. PubMed DOI

Adams W.P., Jr., Rios J.L., Smith S.J. Enhancing patient outcomes in aesthetic and reconstructive breast surgery using triple antibiotic breast irrigation: Six-year prospective clinical study. Plast. Reconstr. Surg. 2006;117:30–36. doi: 10.1097/01.prs.0000185671.51993.7e. PubMed DOI

McGuire P., Reisman N.R., Murphy D.K. Risk factor analysis for capsular contracture, malposition, and late seroma in subjects receiving Natrelle 410 form-stable silicone breast implants. Plast. Reconstr. Surg. 2017;139:1–9. doi: 10.1097/PRS.0000000000002837. PubMed DOI PMC

Yalanis G.C., Liu E.W., Cheng H.T. Efficacy and safety of povidone-iodine irrigation in reducing the risk of capsular contracture in aesthetic breast augmentation: A systematic review and meta-analysis. Plast. Reconstr. Surg. 2015;136:687–698. doi: 10.1097/PRS.0000000000001576. PubMed DOI

Adams W.P., Jr., Calobrace M.B. Discussion: The questionable role of antibiotic irrigation in breast augmentation. Plast. Reconstr. Surg. 2019;144:253–257. doi: 10.1097/PRS.0000000000005727. PubMed DOI

Jacombs A., Tahir S., Hu H., Deva A.K., Almatroudi A., Wessels W.L., Bradshaw D.A., Vickery K. In vitro and in vivo investigation of the influence of implant surface on the formation of bacterial biofilm in mammary implants. Plast. Reconstr. Surg. 2014;133:471e–480e. doi: 10.1097/PRS.0000000000000020. PubMed DOI

Loch-Wilkinson A., Beath K.J., Magnusson M.R., Cooter R., Shaw K., French J., Vickery K., Prince H.M., Deva A.K. Breast implant-associated anaplastic large cell lymphoma in Australia: A longitudinal study of implant and other related risk factors. Aesthetic Surg. J. 2019 doi: 10.1093/asj/sjz333. PubMed DOI

Hu H., Jacombs A., Vickery K., Merten S.L., Pennington D.G., Deva A.K. Chronic biofilm infection in breast implants is associated with an increased T-cell lymphocytic infiltrate: Implications for breast implant-associated lymphoma. Plast. Reconstr. Surg. 2015;135:319–329. doi: 10.1097/PRS.0000000000000886. PubMed DOI

Ramana K.V., Fadl A.A., Tammali R., Reddy A.B., Chopra A.K., Srivastava S.K. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J. Biol. Chem. 2006;281:33019–33029. doi: 10.1074/jbc.M603819200. PubMed DOI

Triantafilou M., Triantafilou K. The dynamics of LPS recognition: Complex orchestration of multiple receptors. J. Endotoxin Res. 2005;11:5–11. doi: 10.1179/096805105225006641. PubMed DOI

Jacobs A.T., Ignarro L.J. Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J. Biol. Chem. 2001;276:47950–47957. doi: 10.1074/jbc.M106639200. PubMed DOI

Pollara G., Handley M.E., Kwan A., Chain B.M., Katz D.R. Autocrine type I interferon amplifies dendritic cell responses to lipopolysaccharide via the nuclear factor-kappaB/p38 pathways. Scand. J. Immunol. 2006;63:151–154. doi: 10.1111/j.1365-3083.2006.01727.x. PubMed DOI

Jewell M.L., Adams W.P., Jr. Betadine and Breast Implants. Aesthetic Surg. J. 2018;38:623–626. doi: 10.1093/asj/sjy044. PubMed DOI

Adams W.P., Jr., Culbertson E.J., Deva A.K., Magnusson R.M., Layt C., Jewell M.L., Mallucci P., Heden P. Macrotextured breast implants with defined steps to minimize bacterial contamination around the device: Experience in 42,000 implants. Plast. Reconstr. Surg. 2017;140:427–431. doi: 10.1097/PRS.0000000000003575. PubMed DOI

Cummins J., Tangney M. Bacteria and tumours: Causative agents or opportunistic inhabitants? Infect. Agents Cancer. 2013;8:11. doi: 10.1186/1750-9378-8-11. PubMed DOI PMC

Cho M., Carter J., Harari S., Pei Z. The interrelationships of the gut microbiome and inflammation in colorectal carcinogenesis. Clin. Lab. Med. 2014;34:699–710. doi: 10.1016/j.cll.2014.08.002. PubMed DOI PMC

Mima K., Nakagawa S., Sawayama H., Ishimoto T., Imai K., Iwatsuki M., Hashimoto D., Baba Y., Yamashita Y.I., Yoshida N., et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 2017;402:9–15. doi: 10.1016/j.canlet.2017.05.001. PubMed DOI

Zhang C., Powell S.E., Betel D., Shah M.A. The gastric microbiome and its influence on gastric carcinogenesis: Current knowledge and ongoing research. Hematol. Oncol. Clin. N. Am. 2017;31:389–408. doi: 10.1016/j.hoc.2017.01.002. PubMed DOI

Parsonnet J., Hansen S., Rodriguez L., Gelb A.B., Warnke R.A., Jellum E., Orentreich N., Vogelman J.H., Friedman G.D. Helicobacter pylori infection and gastric lymphoma. New Engl. J. Med. 1994;330:1267–1271. doi: 10.1056/NEJM199405053301803. PubMed DOI

Lamb A., Chen L.F. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J. Cell. Biochem. 2013;114:491–497. doi: 10.1002/jcb.24389. PubMed DOI PMC

Melenotte C., Million M., Audoly G., Gorse A., Dutronc H., Roland G., Dekel M., Moreno A., Cammilleri S., Carrieri M.P., et al. B-cell non-Hodgkin lymphoma linked to Coxiella burnetii. Blood. 2016;127:113–121. doi: 10.1182/blood-2015-04-639617. PubMed DOI

Linnemann T., Gellrich S., Lukowsky A., Mielke A., Audring H., Sterry W., Walden P. Polyclonal expansion of T cells with the TCR V beta type of the tumour cell in lesions of cutaneous T-cell lymphoma: Evidence for possible superantigen involvement. Br. J. Dermatol. 2004;150:1013–1017. doi: 10.1111/j.1365-2133.2004.05970.x. PubMed DOI

Llewelyn M., Sriskandan S., Terrazzini N., Cohen J., Altmann D.M. The TCR Vbeta signature of bacterial superantigens spreads with stimulus strength. Int. Immunol. 2006;18:1433–1441. doi: 10.1093/intimm/dxl076. PubMed DOI

Deva A.K. Response to “breast implant-associated anaplastic large cell lymphoma (BIA-ALCL): Why the search for an infectious etiology may be irrelevant”. Aesthetic Surg. J. 2017;37:NP122–NP128. doi: 10.1093/asj/sjx133. PubMed DOI

Blombery P., Thompson E.R., Jones K., Arnau G.M., Lade S., Markham J.F., Li J., Deva A., Johnstone R.W., Khot A., et al. Whole exome sequencing reveals activating JAK1 and STAT3 mutations in breast implant-associated anaplastic large cell lymphoma anaplastic large cell lymphoma. Haematologica. 2016;101:e387–e390. doi: 10.3324/haematol.2016.146118. PubMed DOI PMC

Jones P., Mempin M., Hu H., Chowdhury D., Foley M., Cooter R., Adams W.P., Jr., Vickery K., Deva A.K. The functional influence of breast implant outer shell morphology on bacterial attachment and growth. Plast. Reconstr. Surg. 2018;142:837–849. doi: 10.1097/PRS.0000000000004801. PubMed DOI

Di Napoli A., de Cecco L., Piccaluga P.P., Navari M., Cancila V., Cippitelli C., Pepe G., Lopez G., Monardo F., Bianchi A., et al. Transcriptional analysis distinguishes breast implant-associated anaplastic large cell lymphoma from other peripheral T-cell lymphomas. Mod. Pathol. 2019;32:216–230. doi: 10.1038/s41379-018-0130-7. PubMed DOI

Kang S.T., Wang H.C., Yang Y.T., Kou G.H., Lo C.F. The DNA virus white spot syndrome virus uses an internal ribosome entry site for translation of the highly expressed nonstructural protein ICP35. J. Virol. 2013;87:13263–13278. doi: 10.1128/JVI.01732-13. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...