Etiology of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL): Current Directions in Research
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P01 CA229100
NCI NIH HHS - United States
This work was supported by Allergan (prior to its acquisition by AbbVie), Dublin, Ireland
Allergan
PubMed
33371292
PubMed Central
PMC7765924
DOI
10.3390/cancers12123861
PII: cancers12123861
Knihovny.cz E-zdroje
- Klíčová slova
- T-cells, antigens, bacterial, breast implants, lymphoma,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a CD30-positive, anaplastic lymphoma kinase-negative T-cell lymphoma. Where implant history is known, all confirmed cases to date have occurred in patients with exposure to textured implants. There is a spectrum of disease presentation, with the most common occurring as a seroma with an indolent course. A less common presentation occurs as locally advanced or, rarely, as metastatic disease. Here we review the immunological characteristics of BIA-ALCL and potential triggers leading to its development. BIA-ALCL occurs in an inflammatory microenvironment with significant lymphocyte and plasma cell infiltration and a prominent Th1/Th17 phenotype in advanced disease. Genetic lesions affecting the JAK/STAT signaling pathway are commonly present. Proposed triggers for the development of malignancy include mechanical friction, silicone implant shell particulates, silicone leachables, and bacteria. Of these, the bacterial hypothesis has received significant attention, supported by a plausible biologic model. In this model, bacteria form an adherent biofilm in the favorable environment of the textured implant surface, producing a bacterial load that elicits a chronic inflammatory response. Bacterial antigens, primarily of Gram-negative origin, may trigger innate immunity and induce T-cell proliferation with subsequent malignant transformation in genetically susceptible individuals. Although much remains to be elucidated regarding the multifactorial origins of BIA-ALCL, future research should focus on prevention and treatment strategies, recognizing susceptible populations, and whether decreasing the risk of BIA-ALCL is possible.
Boston University School of Medicine Boston MA 02908 USA
Department of Dermatology Roger Williams Medical Center Providence RI 02908 USA
Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
Department of Pathology Weill Cornell Medicine New York NY 10065 USA
Department of Plastic Surgery School of Medicine Griffith University Southport QLD 4222 Australia
Department of Plastic Surgery University of Texas Southwestern Medical Center Dallas TX 75390 USA
Epworth Healthcare East Melbourne Richmond VIC 3121 Australia
Sir Peter MacCallum Department of Oncology University of Melbourne Parkville VIC 3000 Australia
Zobrazit více v PubMed
Keech J.A., Jr., Creech B.J. Anaplastic T-cell lymphoma in proximity to a saline-filled breast implant. Plast. Reconstr. Surg. 1997;100:554–555. doi: 10.1097/00006534-199708000-00065. PubMed DOI
Lazzeri D., Agostini T., Bocci G., Giannotti G., Fanelli G., Naccarato A.G., Danesi R., Tuccori M., Pantaloni M., D’Aniello C. ALK-1-negative anaplastic large cell lymphoma associated with breast implants: A new clinical entity. Clin. Breast Cancer. 2011;11:283–296. doi: 10.1016/j.clbc.2011.03.020. PubMed DOI
Srinivasa D.R., Miranda R.N., Kaura A., Francis A.M., Campanale A., Boldrini R., Alexander J., Deva A., Gravina P., Medeiros L.J., et al. Global adverse event reports of breast implant-associated ALCL: An international review of 40 government authority databases. Plast. Reconstr. Surg. 2017;139:1029–1039. doi: 10.1097/PRS.0000000000003233. PubMed DOI
Doren E.L., Miranda R.N., Selber J.C., Garvey P.B., Liu J., Medeiros L.J., Butler C.E., Clemens M.W. U.S. epidemiology of breast implant-associated anaplastic large cell lymphoma. Plast. Reconstr. Surg. 2017;139:1042–1050. doi: 10.1097/PRS.0000000000003282. PubMed DOI
Miranda R.N., Aladily T.N., Prince H.M., Kanagal-Shamanna R., de Jong D., Fayad L.E., Amin M.B., Haideri N., Bhagat G., Brooks G.S., et al. Breast implant-associated anaplastic large-cell lymphoma: Long-term follow-up of 60 patients. J. Clin. Oncol. 2014;32:114–120. doi: 10.1200/JCO.2013.52.7911. PubMed DOI PMC
Maisel W. Breast Implant Associated-Anaplastic Large Cell Lymphoma (BIA-ALCL)—Letter to Health Care Providers. [(accessed on 12 February 2019)]; Available online: https://www.fda.gov/MedicalDevices/Safety/LetterstoHealthCareProviders/ucm630863.htm.
Campanale A., Boldrini R., Marletta M. 22 cases of breast implant-associated ALCL: Awareness and outcome tracking from the Italian Ministry of Health. Plast. Reconstr. Surg. 2018;141:11e–19e. doi: 10.1097/PRS.0000000000003916. PubMed DOI
Cordeiro P.G., Ghione P., Ni A., Hu Q., Ganesan N., Galasso N., Dogan A., Horwitz S.M. Risk of breast implant associated anaplastic large cell lymphoma (BIA-ALCL) in a cohort of 3546 women prospectively followed long term after reconstruction with textured breast implants. J. Plast. Reconstr. Aesthetic Surg. 2020;73:841–846. doi: 10.1016/j.bjps.2019.11.064. PubMed DOI PMC
Mukhtar R.A., Holland M., Sieber D.A., Wen K.W., Rugo H.S., Kadin M.E., Bean G.R. Synchronous breast implant-associated anaplastic large cell lymphoma and invasive carcinoma: Genomic profiling and management implications. Plast. Reconstr. Surg. Glob. Open. 2019;7:e2188. doi: 10.1097/GOX.0000000000002188. PubMed DOI PMC
De Boer M., van Leeuwen F.E., Hauptmann M., Overbeek L.I.H., de Boer J.P., Hijmering N.J., Sernee A., Klazen C.A.H., Lobbes M.B.I., van der Hulst R., et al. Breast implants and the risk of anaplastic large-cell lymphoma in the breast. JAMA Oncol. 2018;4:335–341. doi: 10.1001/jamaoncol.2017.4510. PubMed DOI PMC
Oliveira A.C.P., Maino M., Zanin E.M., de Carli L., Duarte D.W., Collares M.V.M. Breast implants follow-up: Results of a cross-sectional study on patients submitted to MRI breast examinations. Aesthetic Plast. Surg. 2020 doi: 10.1007/s00266-020-01962-1. PubMed DOI
Leberfinger A.N., Behar B.J., Williams N.C., Rakszawski K.L., Potochny J.D., Mackay D.R., Ravnic D.J. Breast implant-associated anaplastic large cell lymphoma: A systematic review. JAMA Surg. 2017;152:1161–1168. doi: 10.1001/jamasurg.2017.4026. PubMed DOI
International Research Collaborations on Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) Initiated by a Scientific Meeting Organised by RIVM in Amsterdam on November the 19th, 2018. [(accessed on 12 December 2018)]; Available online: https://www.rivm.nl/en/medical-devices/silicone-breast-implants/international-meeting-on-bia-alcl.
Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Miranda R.N., Feldman A., Soares F. WHO Classification of Tumours: Breast Tumours. 5th ed. Volume 2 IARC; Lyon, France: 2019.
Jaffe E.S., Ashar B.S., Clemens M.W., Feldman A.L., Gaulard P., Miranda R.N., Sohani A.R., Stenzel T., Yoon S.W. Best practices guideline for the pathologic diagnosis of breast implant-associated anaplastic large-cell lymphoma. J. Clin. Oncol. 2020;38:1102–1111. doi: 10.1200/JCO.19.02778. PubMed DOI PMC
Laurent C., Delas A., Gaulard P., Haioun C., Moreau A., Xerri L., Traverse-Glehen A., Rousset T., Quintin-Roue I., Petrella T., et al. Breast implant-associated anaplastic large cell lymphoma: Two distinct clinicopathological variants with different outcomes. Ann. Oncol. 2016;27:306–314. doi: 10.1093/annonc/mdv575. PubMed DOI PMC
Quesada A.E., Medeiros L.J., Clemens M.W., Ferrufino-Schmidt M.C., Pina-Oviedo S., Miranda R.N. Breast implant-associated anaplastic large cell lymphoma: A review. Mod. Pathol. 2018;32:166–188. doi: 10.1038/s41379-018-0134-3. PubMed DOI
Di Napoli A., Pepe G., Giarnieri E., Cippitelli C., Bonifacino A., Mattei M., Martelli M., Falasca C., Cox M.C., Santino I., et al. Cytological diagnostic features of late breast implant seromas: From reactive to anaplastic large cell lymphoma. PLoS ONE. 2017;12:e0181097. doi: 10.1371/journal.pone.0181097. PubMed DOI PMC
Story S.K., Schowalter M.K., Geskin L.J. Breast implant-associated ALCL: A unique entity in the spectrum of CD30+ lymphoproliferative disorders. Oncologist. 2013;18:301–307. doi: 10.1634/theoncologist.2012-0238. PubMed DOI PMC
Kadin M.E., Adams W.P., Jr., Inghirami G., Di Napoli A. Does breast implant-associated ALCL begin as a lymphoproliferative disorder? Plast. Reconstr. Surg. 2020;145:30e–38e. doi: 10.1097/PRS.0000000000006390. PubMed DOI
Sieber D.A., Adams W.P., Jr. What’s your micromort? A patient-oriented analysis of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) Aesthetic Surg. J. 2017;37:887–891. doi: 10.1093/asj/sjx127. PubMed DOI
Clemens M.W., Horwitz S.M. NCCN consensus guidelines for the diagnosis and management of breast implant-associated anaplastic large cell lymphoma. Aesthetic Surg. J. 2017;37:285–289. doi: 10.1093/asj/sjw259. PubMed DOI
Clemens M.W., Medeiros L.J., Butler C.E., Hunt K.K., Fanale M.A., Horwitz S., Weisenburger D.D., Liu J., Morgan E.A., Kanagal-Shamanna R., et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J. Clin. Oncol. 2016;34:160–168. doi: 10.1200/JCO.2015.63.3412. PubMed DOI PMC
Hazenberg M.D., Spits H. Human innate lymphoid cells. Blood. 2014;124:700–709. doi: 10.1182/blood-2013-11-427781. PubMed DOI
Melvold R.W., Sticca R.P. Basic and tumor immunology: A review. Surg. Oncol. Clin. N. Am. 2007;16:711–735. doi: 10.1016/j.soc.2007.08.003. PubMed DOI
Warrington R., Watson W., Kim H.L., Antonetti F.R. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2011;7:S1. doi: 10.1186/1710-1492-7-S1-S1. PubMed DOI PMC
Aladily T.N., Medeiros L.J., Amin M.B., Haideri N., Ye D., Azevedo S.J., Jorgensen J.L., de Peralta-Venturina M., Mustafa E.B., Young K.H., et al. Anaplastic large cell lymphoma associated with breast implants: A report of 13 cases. Am. J. Surg. Pathol. 2012;36:1000–1008. doi: 10.1097/PAS.0b013e31825749b1. PubMed DOI
Lechner M.G., Megiel C., Church C.H., Angell T.E., Russell S.M., Sevell R.B., Jang J.K., Brody G.S., Epstein A.L. Survival signals and targets for therapy in breast implant-associated ALK—Anaplastic large cell lymphoma. Clin. Cancer Res. 2012;18:4549–4559. doi: 10.1158/1078-0432.CCR-12-0101. PubMed DOI
Eberl G., Colonna M., Di Santo J.P., McKenzie A.N. Innate lymphoid cells. Innate lymphoid cells: A new paradigm in immunology. Science. 2015;348:aaa6566. doi: 10.1126/science.aaa6566. PubMed DOI PMC
Hawse W.F., Morel P.A. An immunology primer for computational modelers. J. Pharmacokinet. Pharmacodyn. 2014;41:389–399. doi: 10.1007/s10928-014-9384-y. PubMed DOI PMC
Wolfram D., Rabensteiner E., Grundtman C., Bock G., Mayerl C., Parson W., Almanzar G., Hasenohrl C., Piza-Katzer H., Wick G. T regulatory cells and TH17 cells in peri-silicone implant capsular fibrosis. Plast. Reconstr. Surg. 2012;129:327e–337e. doi: 10.1097/PRS.0b013e31823aeacf. PubMed DOI
Kadin M.E., Morgan J., Xu H., Epstein A.L., Sieber D., Hubbard B.A., Adams W.P., Jr., Bacchi C.E., Goes J.C.S., Clemens M.W., et al. IL-13 is produced by tumor cells in breast implant associated anaplastic large cell lymphoma: Implications for pathogenesis. Hum. Pathol. 2018;78:54–62. doi: 10.1016/j.humpath.2018.04.007. PubMed DOI
Kadin M.E., Morgan J., Kouttab N., Xu H., Adams W.P., Glicksman C., McGuire P., Sieber D., Epstein A.L., Miranda R.N., et al. Comparative analysis of cytokines of tumor cell lines, malignant and benign effusions around breast implants. Aesthetic Surg. J. 2019 doi: 10.1093/asj/sjz243. PubMed DOI
Waldmann T.A., Chen J. Disorders of the JAK/STAT pathway in T Cell lymphoma pathogenesis: Implications for immunotherapy. Annu. Rev. Immunol. 2017;35:533–550. doi: 10.1146/annurev-immunol-110416-120628. PubMed DOI PMC
Bollrath J., Phesse T.J., von Burstin V.A., Putoczki T., Bennecke M., Bateman T., Nebelsiek T., Lundgren-May T., Canli O., Schwitalla S., et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102. doi: 10.1016/j.ccr.2009.01.002. PubMed DOI
Grivennikov S., Karin E., Terzic J., Mucida D., Yu G.Y., Vallabhapurapu S., Scheller J., Rose-John S., Cheroutre H., Eckmann L., et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–113. doi: 10.1016/j.ccr.2009.01.001. PubMed DOI PMC
Rebouissou S., Amessou M., Couchy G., Poussin K., Imbeaud S., Pilati C., Izard T., Balabaud C., Bioulac-Sage P., Zucman-Rossi J. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature. 2009;457:200–204. doi: 10.1038/nature07475. PubMed DOI PMC
Ambrogio C., Martinengo C., Voena C., Tondat F., Riera L., di Celle P.F., Inghirami G., Chiarle R. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 2009;69:8611–8619. doi: 10.1158/0008-5472.CAN-09-2655. PubMed DOI PMC
Laurent C., Nicolae A., Laurent C., Le Bras F., Haioun C., Fataccioli V., Amara N., Adelaide J., Guille A., Schiano J.M., et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood. 2020;135:360–370. doi: 10.1182/blood.2019001904. PubMed DOI PMC
Chen J., Zhang Y., Petrus M.N., Xiao W., Nicolae A., Raffeld M., Pittaluga S., Bamford R.N., Nakagawa M., Ouyang S.T., et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc. Natl. Acad. Sci. USA. 2017;114:3975–3980. doi: 10.1073/pnas.1700682114. PubMed DOI PMC
Tevis S.E., Hunt K.K., Miranda R.N., Lange C., Butler C.E., Clemens M.W. Differences in human leukocyte antigen expression between breast implant-associated anaplastic large cell lymphoma patients and the general population. Aesthetic Surg. J. 2019;39:1065–1070. doi: 10.1093/asj/sjz021. PubMed DOI
Montes-Mojarro I.A., Steinhilber J., Bonzheim I., Quintanilla-Martinez L., Fend F. The pathological spectrum of systemic anaplastic large cell lymphoma (ALCL) Cancers. 2018;10:107. doi: 10.3390/cancers10040107. PubMed DOI PMC
Oishi N., Brody G.S., Ketterling R.P., Viswanatha D.S., He R., Dasari S., Mai M., Benson H.K., Sattler C.A., Boddicker R.L., et al. Genetic subtyping of breast implant-associated anaplastic large cell lymphoma. Blood. 2018;132:544–547. doi: 10.1182/blood-2017-12-821868. PubMed DOI PMC
Kadin M.E., Deva A., Xu H., Morgan J., Khare P., MacLeod R.A., Van Natta B.W., Adams W.P., Jr., Brody G.S., Epstein A.L. Biomarkers provide clues to early events in the pathogenesis of breast implant-associated anaplastic large cell lymphoma. Aesthetic Surg. J. 2016;36:773–781. doi: 10.1093/asj/sjw023. PubMed DOI
Lewold S., Olsson H., Gustafson P., Rydholm A., Lidgren L. Overall cancer incidence not increased after prosthetic knee replacement: 14,551 patients followed for 66,622 person-years. Int. J. Cancer. 1996;68:30–33. doi: 10.1002/(SICI)1097-0215(19960927)68:1<30::AID-IJC6>3.0.CO;2-Y. PubMed DOI
Lidgren L. Chronic inflammation, joint replacement and malignant lymphoma. J. Bone Joint Surg. Br. 2008;90:7–10. doi: 10.1302/0301-620X.90B1.19823. PubMed DOI
Kellogg B.C., Hiro M.E., Payne W.G. Implant-associated anaplastic large cell lymphoma: Beyond breast prostheses. Ann. Plast. Surg. 2014;73:461–464. doi: 10.1097/SAP.0b013e31827faff2. PubMed DOI
Palraj B., Paturi A., Stone R.G., Alvarez H., Sebenik M., Perez M.T., Bush L.M. Soft tissue anaplastic large T-cell lymphoma associated with a metallic orthopedic implant: Case report and review of the current literature. J. Foot Ankle Surg. 2010;49:561–564. doi: 10.1053/j.jfas.2010.08.009. PubMed DOI
Yoon H.J., Choe J.Y., Jeon Y.K. Mucosal CD30-positive T-cell lymphoproliferative disorder arising in the oral cavity following dental implants: Report of the first case. Int. J. Surg. Pathol. 2015;23:656–661. doi: 10.1177/1066896915599059. PubMed DOI
Manikkam Umakanthan J., McBride C.L., Greiner T., Yuan J., Sanmann J., Bierman P.J., Lunning M.A., Bociek R.G. Bariatric implant-associated anaplastic large-cell lymphoma. J. Oncol. Pract. 2017;13:838–839. doi: 10.1200/JOP.2017.026153. PubMed DOI
Shauly O., Gould D.J., Siddiqi I., Patel K.M., Carey J. The first reported case of gluteal implant-associated anaplastic large cell lymphoma (ALCL) Aesthetic Surg. J. 2019;39:NP253–NP258. doi: 10.1093/asj/sjz044. PubMed DOI
Engberg A.K., Bunick C.G., Subtil A., Ko C.J., Girardi M. Development of a plaque infiltrated with large CD30+ T cells over a silicone-containing device in a patient with history of Sezary syndrome. J. Clin. Oncol. 2013;31:e87–e89. doi: 10.1200/JCO.2012.42.9241. PubMed DOI PMC
Hallab N.J., Samelko L., Hammond D. The inflammatory effects of breast implant particulate shedding: Comparison with orthopedic implants. Aesthetic Surg. J. 2019;39:S36–S48. doi: 10.1093/asj/sjy335. PubMed DOI PMC
Haussmann P. Long-term results after silicone prosthesis replacement of the proximal pole of the scaphoid bone in advanced scaphoid nonunion. J. Hand Surg. Br. 2002;27:417–423. doi: 10.1054/jhsb.2002.0758. PubMed DOI
Khoo C.T. Silicone synovitis. The current role of silicone elastomer implants in joint reconstruction. J. Hand Surg. Br. 1993;18:679–686. doi: 10.1016/0266-7681(93)90222-2. PubMed DOI
Hirakawa K., Bauer T.W., Culver J.E., Wilde A.H. Isolation and quantitation of debris particles around failed silicone orthopedic implants. J. Hand Surg. Am. 1996;21:819–827. doi: 10.1016/S0363-5023(96)80198-5. PubMed DOI
Pearle A.D., Crow M.K., Rakshit D.S., Wohlgemuth J., Nestor B.J. Distinct inflammatory gene pathways induced by particles. Clin. Orthop. Relat. Res. 2007;458:194–201. doi: 10.1097/BLO.0b013e3180320ae8. PubMed DOI
Fleury E.F., Rego M.M., Ramalho L.C., Ayres V.J., Seleti R.O., Ferreira C.A., Roveda D., Jr. Silicone-induced granuloma of breast implant capsule (SIGBIC): Similarities and differences with anaplastic large cell lymphoma (ALCL) and their differential diagnosis. Breast Cancer. 2017;9:133–140. doi: 10.2147/BCTT.S126003. PubMed DOI PMC
Bizjak M., Selmi C., Praprotnik S., Bruck O., Perricone C., Ehrenfeld M., Shoenfeld Y. Silicone implants and lymphoma: The role of inflammation. J. Autoimmun. 2015;65:64–73. doi: 10.1016/j.jaut.2015.08.009. PubMed DOI
Webb L.H., Aime V.L., Do A., Mossman K., Mahabir R.C. Textured breast implants: A closer look at the surface debris under the microscope. Plast. Surg. 2017;25:179–183. doi: 10.1177/2292550317716127. PubMed DOI PMC
Loch-Wilkinson A., Beath K., Knight R.J.W., Wessels W.L.F., Magnusson M., Papadopoulos T., Connell T., Lofts J., Locke M., Hopper I., et al. Breast implant-associated anaplastic large cell lymphoma in Australia and New Zealand: High surface area textured implants are associated with increased risk. Plast. Reconstr. Surg. 2017;140:645–654. doi: 10.1097/PRS.0000000000003654. PubMed DOI
Flassbeck D., Pfleiderer B., Klemens P., Heumann K.G., Eltze E., Hirner A.V. Determination of siloxanes, silicon, and platinum in tissues of women with silicone gel-filled implants. Anal. Bioanal. Chem. 2003;375:356–362. doi: 10.1007/s00216-002-1694-z. PubMed DOI
Potter M. Silicone gels induce plasmacytomas in BALB/c mice. NIH Catal. 1994;19:22–23.
Food and Drug Administration FDA Backgrounder on Platinum in Silicone Breast Implants. [(accessed on 9 July 2018)]; Available online: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/BreastImplants/UCM064040.
Brook M.A. Platinum in silicone breast implants. Biomaterials. 2006;27:3274–3286. doi: 10.1016/j.biomaterials.2006.01.027. PubMed DOI
Burkhardt B.R., Fried M., Schnur P.L., Tofield J.J. Capsules, infection, and intraluminal antibiotics. Plast. Reconstr. Surg. 1981;68:43–49. doi: 10.1097/00006534-198107000-00010. PubMed DOI
Rieger U.M., Mesina J., Kalbermatten D.F., Haug M., Frey H.P., Pico R., Frei R., Pierer G., Luscher N.J., Trampuz A. Bacterial biofilms and capsular contracture in patients with breast implants. Br. J. Surg. 2013;100:768–774. doi: 10.1002/bjs.9084. PubMed DOI
Pajkos A., Deva A.K., Vickery K., Cope C., Chang L., Cossart Y.E. Detection of subclinical infection in significant breast implant capsules. Plast. Reconstr. Surg. 2003;111:1605–1611. doi: 10.1097/01.PRS.0000054768.14922.44. PubMed DOI
Adams W.P., Jr. Capsular contracture: What is it? What causes it? How can it be prevented and managed? Clin. Plast. Surg. 2009;36:119–126. doi: 10.1016/j.cps.2008.08.007. vii. PubMed DOI
Spear S.L., Baker J.L., Jr. Classification of capsular contracture after prosthetic breast reconstruction. Plast. Reconstr. Surg. 1995;96:1119–1123; discussion 1124. doi: 10.1097/00006534-199510000-00018. PubMed DOI
Urbaniak C., Cummins J., Brackstone M., Macklaim J.M., Gloor G.B., Baban C.K., Scott L., O’Hanlon D.M., Burton J.P., Francis K.P., et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 2014;80:3007–3014. doi: 10.1128/AEM.00242-14. PubMed DOI PMC
Hieken T.J., Chen J., Hoskin T.L., Walther-Antonio M., Johnson S., Ramaker S., Xiao J., Radisky D.C., Knutson K.L., Kalari K.R., et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 2016;6:30751. doi: 10.1038/srep30751. PubMed DOI PMC
Bartsich S., Ascherman J.A., Whittier S., Yao C.A., Rohde C. The breast: A clean-contaminated surgical site. Aesthetic Surg. J. 2011;31:802–806. doi: 10.1177/1090820X11417428. PubMed DOI
Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010;8:623–633. doi: 10.1038/nrmicro2415. PubMed DOI
Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001;45:999–1007. doi: 10.1128/AAC.45.4.999-1007.2001. PubMed DOI PMC
Roilides E., Simitsopoulou M., Katragkou A., Walsh T.J. How biofilms evade host defenses. Microbiol. Spectr. 2015;3 doi: 10.1128/microbiolspec.MB-0012-2014. PubMed DOI
Deva A.K., Adams W.P., Jr., Vickery K. The role of bacterial biofilms in device-associated infection. Plast. Reconstr. Surg. 2013;132:1319–1328. doi: 10.1097/PRS.0b013e3182a3c105. PubMed DOI
Adams W.P., Jr., Rios J.L., Smith S.J. Enhancing patient outcomes in aesthetic and reconstructive breast surgery using triple antibiotic breast irrigation: Six-year prospective clinical study. Plast. Reconstr. Surg. 2006;117:30–36. doi: 10.1097/01.prs.0000185671.51993.7e. PubMed DOI
McGuire P., Reisman N.R., Murphy D.K. Risk factor analysis for capsular contracture, malposition, and late seroma in subjects receiving Natrelle 410 form-stable silicone breast implants. Plast. Reconstr. Surg. 2017;139:1–9. doi: 10.1097/PRS.0000000000002837. PubMed DOI PMC
Yalanis G.C., Liu E.W., Cheng H.T. Efficacy and safety of povidone-iodine irrigation in reducing the risk of capsular contracture in aesthetic breast augmentation: A systematic review and meta-analysis. Plast. Reconstr. Surg. 2015;136:687–698. doi: 10.1097/PRS.0000000000001576. PubMed DOI
Adams W.P., Jr., Calobrace M.B. Discussion: The questionable role of antibiotic irrigation in breast augmentation. Plast. Reconstr. Surg. 2019;144:253–257. doi: 10.1097/PRS.0000000000005727. PubMed DOI
Jacombs A., Tahir S., Hu H., Deva A.K., Almatroudi A., Wessels W.L., Bradshaw D.A., Vickery K. In vitro and in vivo investigation of the influence of implant surface on the formation of bacterial biofilm in mammary implants. Plast. Reconstr. Surg. 2014;133:471e–480e. doi: 10.1097/PRS.0000000000000020. PubMed DOI
Loch-Wilkinson A., Beath K.J., Magnusson M.R., Cooter R., Shaw K., French J., Vickery K., Prince H.M., Deva A.K. Breast implant-associated anaplastic large cell lymphoma in Australia: A longitudinal study of implant and other related risk factors. Aesthetic Surg. J. 2019 doi: 10.1093/asj/sjz333. PubMed DOI
Hu H., Jacombs A., Vickery K., Merten S.L., Pennington D.G., Deva A.K. Chronic biofilm infection in breast implants is associated with an increased T-cell lymphocytic infiltrate: Implications for breast implant-associated lymphoma. Plast. Reconstr. Surg. 2015;135:319–329. doi: 10.1097/PRS.0000000000000886. PubMed DOI
Ramana K.V., Fadl A.A., Tammali R., Reddy A.B., Chopra A.K., Srivastava S.K. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J. Biol. Chem. 2006;281:33019–33029. doi: 10.1074/jbc.M603819200. PubMed DOI
Triantafilou M., Triantafilou K. The dynamics of LPS recognition: Complex orchestration of multiple receptors. J. Endotoxin Res. 2005;11:5–11. doi: 10.1179/096805105225006641. PubMed DOI
Jacobs A.T., Ignarro L.J. Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J. Biol. Chem. 2001;276:47950–47957. doi: 10.1074/jbc.M106639200. PubMed DOI
Pollara G., Handley M.E., Kwan A., Chain B.M., Katz D.R. Autocrine type I interferon amplifies dendritic cell responses to lipopolysaccharide via the nuclear factor-kappaB/p38 pathways. Scand. J. Immunol. 2006;63:151–154. doi: 10.1111/j.1365-3083.2006.01727.x. PubMed DOI
Jewell M.L., Adams W.P., Jr. Betadine and Breast Implants. Aesthetic Surg. J. 2018;38:623–626. doi: 10.1093/asj/sjy044. PubMed DOI
Adams W.P., Jr., Culbertson E.J., Deva A.K., Magnusson R.M., Layt C., Jewell M.L., Mallucci P., Heden P. Macrotextured breast implants with defined steps to minimize bacterial contamination around the device: Experience in 42,000 implants. Plast. Reconstr. Surg. 2017;140:427–431. doi: 10.1097/PRS.0000000000003575. PubMed DOI
Cummins J., Tangney M. Bacteria and tumours: Causative agents or opportunistic inhabitants? Infect. Agents Cancer. 2013;8:11. doi: 10.1186/1750-9378-8-11. PubMed DOI PMC
Cho M., Carter J., Harari S., Pei Z. The interrelationships of the gut microbiome and inflammation in colorectal carcinogenesis. Clin. Lab. Med. 2014;34:699–710. doi: 10.1016/j.cll.2014.08.002. PubMed DOI PMC
Mima K., Nakagawa S., Sawayama H., Ishimoto T., Imai K., Iwatsuki M., Hashimoto D., Baba Y., Yamashita Y.I., Yoshida N., et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 2017;402:9–15. doi: 10.1016/j.canlet.2017.05.001. PubMed DOI
Zhang C., Powell S.E., Betel D., Shah M.A. The gastric microbiome and its influence on gastric carcinogenesis: Current knowledge and ongoing research. Hematol. Oncol. Clin. N. Am. 2017;31:389–408. doi: 10.1016/j.hoc.2017.01.002. PubMed DOI
Parsonnet J., Hansen S., Rodriguez L., Gelb A.B., Warnke R.A., Jellum E., Orentreich N., Vogelman J.H., Friedman G.D. Helicobacter pylori infection and gastric lymphoma. New Engl. J. Med. 1994;330:1267–1271. doi: 10.1056/NEJM199405053301803. PubMed DOI
Lamb A., Chen L.F. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J. Cell. Biochem. 2013;114:491–497. doi: 10.1002/jcb.24389. PubMed DOI PMC
Melenotte C., Million M., Audoly G., Gorse A., Dutronc H., Roland G., Dekel M., Moreno A., Cammilleri S., Carrieri M.P., et al. B-cell non-Hodgkin lymphoma linked to Coxiella burnetii. Blood. 2016;127:113–121. doi: 10.1182/blood-2015-04-639617. PubMed DOI
Linnemann T., Gellrich S., Lukowsky A., Mielke A., Audring H., Sterry W., Walden P. Polyclonal expansion of T cells with the TCR V beta type of the tumour cell in lesions of cutaneous T-cell lymphoma: Evidence for possible superantigen involvement. Br. J. Dermatol. 2004;150:1013–1017. doi: 10.1111/j.1365-2133.2004.05970.x. PubMed DOI
Llewelyn M., Sriskandan S., Terrazzini N., Cohen J., Altmann D.M. The TCR Vbeta signature of bacterial superantigens spreads with stimulus strength. Int. Immunol. 2006;18:1433–1441. doi: 10.1093/intimm/dxl076. PubMed DOI
Deva A.K. Response to “breast implant-associated anaplastic large cell lymphoma (BIA-ALCL): Why the search for an infectious etiology may be irrelevant”. Aesthetic Surg. J. 2017;37:NP122–NP128. doi: 10.1093/asj/sjx133. PubMed DOI
Blombery P., Thompson E.R., Jones K., Arnau G.M., Lade S., Markham J.F., Li J., Deva A., Johnstone R.W., Khot A., et al. Whole exome sequencing reveals activating JAK1 and STAT3 mutations in breast implant-associated anaplastic large cell lymphoma anaplastic large cell lymphoma. Haematologica. 2016;101:e387–e390. doi: 10.3324/haematol.2016.146118. PubMed DOI PMC
Jones P., Mempin M., Hu H., Chowdhury D., Foley M., Cooter R., Adams W.P., Jr., Vickery K., Deva A.K. The functional influence of breast implant outer shell morphology on bacterial attachment and growth. Plast. Reconstr. Surg. 2018;142:837–849. doi: 10.1097/PRS.0000000000004801. PubMed DOI
Di Napoli A., de Cecco L., Piccaluga P.P., Navari M., Cancila V., Cippitelli C., Pepe G., Lopez G., Monardo F., Bianchi A., et al. Transcriptional analysis distinguishes breast implant-associated anaplastic large cell lymphoma from other peripheral T-cell lymphomas. Mod. Pathol. 2019;32:216–230. doi: 10.1038/s41379-018-0130-7. PubMed DOI
Kang S.T., Wang H.C., Yang Y.T., Kou G.H., Lo C.F. The DNA virus white spot syndrome virus uses an internal ribosome entry site for translation of the highly expressed nonstructural protein ICP35. J. Virol. 2013;87:13263–13278. doi: 10.1128/JVI.01732-13. PubMed DOI PMC