Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins

. 2020 Dec 22 ; 13 (1) : . [epub] 20201222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33375094

Grantová podpora
68378297 The research was supported by Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics

Epoxy resins are characterized by excellent properties such as chemical resistance, shape stability, hardness and heat resistance, but they present low flame resistance. In this work, the synthesized derivatives, namely hexacyclohexylamino-cyclotriphosphazene (HCACTP) and novel diaminotetracyclohexylamino-cyclotriphosphazene (DTCATP), were applied as curing agents for halogen-free flame retarding epoxy materials. The thermal properties and combustion behavior of the cured epoxy resins were investigated. The obtained results revealed that the application of both derivatives significantly increased flame resistance. The epoxy resins cured with HCACTP and DTCATP exhibited lower total heat release together with lower total smoke production compared to the epoxy materials based on conventional curing agents (dipropylenetriamine and ethylenediamine). Comparing both derivatives, the HCACTP-cured epoxy resin was found to provide a higher flame resistance. The designed novel class of epoxy materials may be used for the preparation of materials with improved flame resistance properties in terms of flame spreading and smoke inhibition.

Zobrazit více v PubMed

Holbery J., Houston D. Natural-fiber-reinforced polymer composites in automotive applications. JOM. 2006;58:80–86.

Al-Qureshi H.A. Automobile leaf springs from composite materials. J. Mater. Process. Technol. 2001;118:58–61.

Kumar S., Krishnan S., Samal S.K., Mohanty S., Nayak S.K. Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: A review. Ind. Eng. Chem. Res. 2018;57:2711–2726.

Babu T.N., Singh A.K., Mandliya A., Singh A., Prabha D.R. Evaluation of Flexural Strength of Epoxy Resin Based hybrid Composites Reinforced with Jute, Banana and Flax Natural Fibers for Bio medical applications. Res. J. Pharm. Technol. 2018;11:547–552.

Petzold R., Zeilhofer H.-F., Kalender W.A. Rapid prototyping technology in medicine—Basics and applications. Comput. Med. Imaging Graph. 1999;23:277–284. PubMed

Dell’Anna R., Lionetto F., Montagna F., Maffezzoli A. Lay-up and consolidation of a composite pipe by in situ ultrasonic welding of a thermoplastic matrix composite tape. Materials. 2018;11:786 PubMed PMC

Levchik S.V., Weil E.D. Thermal decomposition, combustion and flame-retardancy of epoxy resins—A review of the recent literature. Polym. Int. 2004;53:1901–1929.

Kemmlein S., Herzke D., Law R.J. Brominated flame retardants in the European chemicals policy of REACH—Regulation and determination in materials. J. Chromatogr. A. 2009;1216:320–333. PubMed

Derouet D., Morvan F., Brosse J.C. Chemical modification of epoxy resins by dialkyl (or aryl) phosphates: Evaluation of fire behavior and thermal stability. J. Appl. Polym. Sci. 1996;62:1855–1868.

Camino G., Costa L., Martinasso G. Intumescent fire-retardant systems. Polym. Degrad. Stab. 1989;23:359–376.

Lu S.-Y., Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002;27:1661–1712.

Laoutid F., Bonnaud L., Alexandre M., Lopez-Cuesta J.-M., Dubois P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R. Rep. 2009;63:100–125.

Allcock H.R., Taylor J.P. Phosphorylation of phosphazenes and its effects on thermal properties and fire retardant behavior. Polym. Eng. Sci. 2000;40:1177–1189.

Levchik G.F., Grigoriev Y.V., Balabanovich A.I., Levchik S.V., Klatt M. Phosphorus–nitrogen containing fire retardants for poly (butylene terephthalate) Polym. Int. 2000;49:1095–1100.

Chen-Yang Y.W., Chuang J.R., Yang Y.C., Li C.Y., Chiu Y.S. New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood. J. Appl. Polym. Sci. 1998;69:115–122.

Allcock H.R. Recent developments in polyphosphazene materials science. Curr. Opin. Solid State Mater. Sci. 2006;10:231–240.

Allen C.W. The use of phosphazenes as fire resistant materials. J. Fire Sci. 1993;11:320–328.

Devaraju S., Selvi M., Alagar M. Synthesis and characterization of thermally stable and flame retardant hexakis (4-aminophenoxy) cyclotriphosphazene-based polyimide matrices. Int. J. Polym. Anal. Charact. 2018;23:29–37.

Shi Y., Yu B., Zheng Y., Guo J., Chen B., Pan Z., Hu Y. A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polym. Adv. Technol. 2018;29:1242–1254.

Qu T., Yang N., Hou J., Li G., Yao Y., Zhang Q., He L., Wu D., Qu X. Flame retarding epoxy composites with poly (phosphazene-co-bisphenol A)-coated boron nitride to improve thermal conductivity and thermal stability. RSC Adv. 2017;7:6140–6151.

Zhao S., He M., Xu J., Ma H. Synthesis of a functionalised phosphazene-containing nanotube/epoxy nanocomposite with enhanced flame retardancy. Micro Nano Lett. 2017;12:401–403. doi: 10.1049/mnl.2017.0013. DOI

Guo X., Wang X., Liu X., Zheng Y., Xu J., Ma H. Synthesis and application of a dual functional P/N/S-containing microsphere with enhanced flame retardancy and mechanical strength on EP resin. Polym. Adv. Technol. 2018;29:2665–2673. doi: 10.1002/pat.4380. DOI

Wang X., Song L., Xing W., Lu H., Hu Y. A effective flame retardant for epoxy resins based on poly (DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate) Mater. Chem. Phys. 2011;125:536–541. doi: 10.1016/j.matchemphys.2010.10.020. DOI

Sun S., He Y., Wang X., Wu D. Flammability characteristics and performance of halogen-free flame-retarded polyoxymethylene based on phosphorus–nitrogen synergistic effects. J. Appl. Polym. Sci. 2010;118:611–622. doi: 10.1002/app.32465. DOI

Gao M., Yang S. A novel intumescent flame-retardant epoxy resins system. J. Appl. Polym. Sci. 2010;115:2346–2351. doi: 10.1002/app.29483. DOI

Fontenot K.R., Nguyen M.M., Al-Abdul-Wahid M.S., Easson M.W., Chang S., Lorigan G.A., Condon B.D. The thermal degradation pathway studies of a phosphazene derivative on cotton fabric. Polym. Degrad. Stab. 2015;120:32–41. doi: 10.1016/j.polymdegradstab.2015.04.032. DOI

Gu J., Liang C., Zhao X., Gan B., Qiu H., Guo Y., Yang X., Zhang Q., Wang D.-Y. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos. Sci. Technol. 2017;139:83–89. doi: 10.1016/j.compscitech.2016.12.015. DOI

Shi Y., Wang G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl. Surf. Sci. 2016;385:453–463. doi: 10.1016/j.apsusc.2016.05.107. DOI

Cui J., Zhang Y., Wang L., Liu H., Wang N., Yang B., Guo J., Tian L. Phosphorus-containing Salen-Ni metal complexes enhancing the flame retardancy and smoke suppression of epoxy resin composites. J. Appl. Polym. Sci. 2020;137:48734. doi: 10.1002/app.48734. DOI

Wang X., Chen T., Hong J., Luo W., Zeng B., Yuan C., Xu Y., Chen G., Dai L. In-situ growth of metal-organophosphorus nanosheet/nanorod on graphene for enhancing flame retardancy and mechanical properties of epoxy resin. Compos. Part B Eng. 2020;200:108271. doi: 10.1016/j.compositesb.2020.108271. DOI

Kalali E.N., Guo W., Wang X., Xing W., Song L., Hu Y. Effect of metal-based nanoparticles decorated graphene hybrids on flammability of epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2020;129:105694. doi: 10.1016/j.compositesa.2019.105694. DOI

Yang G., Wu W.-H., Wang Y.-H., Jiao Y.-H., Lu L.-Y., Qu H.-Q., Qin X.-Y. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of Epoxy Resin. J. Hazard. Mater. 2019;366:78–87. doi: 10.1016/j.jhazmat.2018.11.093. PubMed DOI

Li X.-L., Zhang F.-H., Jian R.-K., Ai Y.-F., Ma J.-L., Hui G.-J., Wang D.-Y. Influence of eco-friendly calcium gluconate on the intumescent flame-retardant epoxy resin: Flame retardancy, smoke suppression and mechanical properties. Compos. Part B Eng. 2019;176:107200. doi: 10.1016/j.compositesb.2019.107200. DOI

Liang D., Zhu X., Dai P., Lu X., Guo H., Que H., Wang D., He T., Xu C., Robin H.M. Preparation of a novel lignin-based flame retardant for epoxy resin. Mater. Chem. Phys. 2020;259:124101. doi: 10.1016/j.matchemphys.2020.124101. DOI

Rad E.R., Vahabi H., de Anda A.R., Saeb M.R., Thomas S. Bio-epoxy resins with inherent flame retardancy. Prog. Org. Coat. 2019;135:608–612. doi: 10.1016/j.porgcoat.2019.05.046. DOI

Liang Y., Huang Z., Cao Y., Peng Y. Synthesis of a Novel Spiro Phosphorus-Nitrogen Concerted Reactive Flame-Retardant Curing Agent and its Application in Epoxy Resin. Front. Mater. 2020;7:293.

Huo S., Liu Z., Li C., Wang X., Cai H., Wang J. Synthesis of a phosphaphenanthrene/benzimidazole-based curing agent and its application in flame-retardant epoxy resin. Polym. Degrad. Stab. 2019;163:100–109. doi: 10.1016/j.polymdegradstab.2019.03.003. DOI

Zhu Z.-M., Wang L.-X., Lin X.-B., Dong L.-P. Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2019;169:108981. doi: 10.1016/j.polymdegradstab.2019.108981. DOI

Zarybnicka L., Bacovska R., Spacek V., Rychly J., Vecera M., Alberti M. Preparation and Characterization of Cured Epoxy Resin with Hexachloro-Cyclo-Triphosphazene. Polym. Plast. Technol. Eng. 2017;56:153–160. doi: 10.1080/03602559.2016.1185622. DOI

Allen C.W. Regio-and stereochemical control in substitution reactions of cyclophosphazenes. Chem. Rev. 1991;91:119–135. doi: 10.1021/cr00002a002. DOI

Conner D.A., Welna D.T., Chang Y., Allcock H.R. Influence of Terminal Phenyl Groups on the Side Chains of Phosphazene Polymers: Structure− Property Relationships and Polymer Electrolyte Behavior. Macromolecules. 2007;40:322–328. doi: 10.1021/ma061916e. DOI

Yang R., Hu W., Xu L., Song Y., Li J. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym. Degrad. Stab. 2015;122:102–109. doi: 10.1016/j.polymdegradstab.2015.10.007. DOI

Chen-Yang Y.W., Cheng S.J., Tsai B.D. Preparation of the partially substituted (phenoxy) chlorocyclotriphosphazenes by phase-transfer catalysis. Ind. Eng. Chem. Res. 1991;30:1314–1319. doi: 10.1021/ie00054a036. DOI

Denq B., Hu Y., Chen L., Chiu W., Wu T. The curing reaction and physical properties of DGEBA/DETA epoxy resin blended with propyl ester phosphazene. J. Appl. Polym. Sci. 1999;74:229–237. doi: 10.1002/(SICI)1097-4628(19991003)74:1<229::AID-APP28>3.0.CO;2-C. DOI

Xu M.-J., Xu G.-R., Leng Y., Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym. Degrad. Stab. 2016;123:105–114. doi: 10.1016/j.polymdegradstab.2015.11.018. DOI

Jiang P., Gu X., Zhang S., Sun J., Xu R., Bourbigot S., Duquesne S., Casetta M. Flammability and thermal degradation of poly (lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS. Polymer. 2015;79:221–231. doi: 10.1016/j.polymer.2015.10.029. DOI

Ding J., Shi W. Thermal degradation and flame retardancy of hexaacrylated/hexaethoxyl cyclophosphazene and their blends with epoxy acrylate. Polym. Degrad. Stab. 2004;84:159–165. doi: 10.1016/j.polymdegradstab.2003.10.006. DOI

Terekhov I.V., Filatov S.N., Chistyakov E.M., Borisov R.S., Kireev V.V. Synthesis of oligomeric epoxycyclotriphosphazenes and their properties as reactive flame-retardants for epoxy resins. Phosphorus Sulfur Silicon Relat. Elem. 2017;192:544–554. doi: 10.1080/10426507.2016.1274752. DOI

Liu R., Wang X. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin. Polym. Degrad. Stab. 2009;94:617–624. doi: 10.1016/j.polymdegradstab.2009.01.008. DOI

Yang S., Wang J., Huo S., Wang J., Tang Y. Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin. Polym. Degrad. Stab. 2016;126:9–16. doi: 10.1016/j.polymdegradstab.2016.01.011. DOI

Sun J., Wang X., Wu D. Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: Synthesis, curing behaviors, and flammability characteristics. ACS Appl. Mater. Interfaces. 2012;4:4047–4061. doi: 10.1021/am300843c. PubMed DOI

Xu G.-R., Xu M.-J., Li B. Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance. Polym. Degrad. Stab. 2014;109:240–248. doi: 10.1016/j.polymdegradstab.2014.07.020. DOI

Liu H., Wang X., Wu D. Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: Synthesis, curing behaviors, and flame retardancy. Polym. Degrad. Stab. 2014;103:96–112. doi: 10.1016/j.polymdegradstab.2013.02.008. DOI

Yuan W., Tang X., Huang X., Zheng S. Synthesis, characterization and thermal properties of hexaarmed star-shaped poly (ε-caprolactone)-b-poly (d, l-lactide-co-glycolide) initiated with hydroxyl-terminated cyclotriphosphazene. Polymer. 2005;46:1701–1707. doi: 10.1016/j.polymer.2004.12.040. DOI

Chen S., Zheng Q., Ye G., Zheng G. Fire-retardant properties of the viscose rayon containing alkoxycyclotriphosphazene. J. Appl. Polym. Sci. 2006;102:698–702. doi: 10.1002/app.24217. DOI

Qian L., Ye L., Qiu Y., Qu S. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer. 2011;52:5486–5493. doi: 10.1016/j.polymer.2011.09.053. DOI

Allcock H.R. New approaches to hybrid polymers that contain phosphazene rings. J. Inorg. Organomet. Polym. Mater. 2007;17:349–359. doi: 10.1007/s10904-007-9134-3. DOI

El Gouri M., El Bachiri A., Hegazi S.E., Rafik M., El Harfi A. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym. Degrad. Stab. 2009;94:2101–2106. doi: 10.1016/j.polymdegradstab.2009.08.009. DOI

Zhao B., Liang W.-J., Wang J.-S., Li F., Liu Y.-Q. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2016;133:162–173. doi: 10.1016/j.polymdegradstab.2016.08.013. DOI

Zarybnicka L., Bacovska R., Vecera M., Snuparek J., Alberti M., Rychly J., Kalenda P. Synthesis of curing agent for epoxy resin based on halogenophosphazene. J. Appl. Polym. Sci. 2016;133:42917. doi: 10.1002/app.42917. DOI

Richards P.I., Lawson G.T., Bickley J.F., Robertson C.M., Iggo J.A., Steiner A. Polyanionic Ligand Platforms for Methyl-and Dimethylaluminum Arrays. Inorg. Chem. 2019;58:3355–3363. doi: 10.1021/acs.inorgchem.8b03448. PubMed DOI

Bickley J.F., Bonar-Law R., Lawson G.T., Richards P.I., Rivals F., Steiner A., Zacchini S. Supramolecular variations on a molecular theme: The structural diversity of phosphazenes (RNH) 6 P 3 N 3 in the solid state. Dalt Trans. 2003:1235–1244. doi: 10.1039/b212308h. DOI

Van Krevelen D.W., Te Nijenhuis K. Polymer properties. Prop. Polym. 1990;3:3–5.

Wang R., Schuman T.P. Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review. Express Polym. Lett. 2013;7:272–292. doi: 10.3144/expresspolymlett.2013.25. DOI

Langer E., Zubielewicz M., Kuczyńska H., Królikowska A., Komorowski L. Anticorrosive effectiveness of coatings with reduced content of Zn pigments in comparison with zinc-rich primers. Corros. Eng. Sci. Technol. 2019;54:627–635. doi: 10.1080/1478422X.2019.1652428. DOI

Greco A., Lionetto F., Maffezzoli A. Processing and characterization of amorphous polyethylene terephthalate fibers for the alignment of carbon nanofillers in thermosetting resins. Polym. Compos. 2015;36:1096–1103. doi: 10.1002/pc.23366. DOI

Schmulbach Z.N.C. Phosphonitrile polymers. Prog. Inorg. Chem. 1962:275–379.

Truscott E.D. Determination of chlorine in a poly (vinyl chloride) matrix using the Schoeniger oxygen flask and atomic absorption spectrometry. Anal. Chem. 1970;42:1657. doi: 10.1021/ac60295a042. DOI

Flory P.J., Rehner J., Jr. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943;11:512–520. doi: 10.1063/1.1723791. DOI

Tobing S.D., Klein A. Molecular parameters and their relation to the adhesive performance of acrylic pressure-sensitive adhesives. J. Appl. Polym. Sci. 2001;79:2230–2244. doi: 10.1002/1097-4628(20010321)79:12<2230::AID-APP1030>3.0.CO;2-2. DOI

Vandenburg H.J., Clifford A.A., Bartle K.D., Carlson R.E., Carroll J., Newton I.D. A simple solvent selection method for accelerated solvent extraction of additives from polymers. Analyst. 1999;124:1707–1710. doi: 10.1039/a904631c. DOI

Daasch L., Smith D. Infrared spectra of phosphorus compounds. Anal. Chem. 1951;23:853–868. doi: 10.1021/ac60054a008. DOI

Mnqiwu K., Xaba T., Moloto M.J., Mubiayi P.K., Nyamukamba P., Sibokoza S.B. Plasmonic electron deficient Cu2− xS semiconductor nanoparticles from cyclohexylamine-N-dithiocarbamate ligand. Mater. Lett. 2017;199:28–31. doi: 10.1016/j.matlet.2017.04.027. DOI

Çil E., Arslan M., Görgülü A.O. Synthesis and characterization of alkyl-and acyl-substituted oxime phosphazenes. Can. J. Chem. 2005;83:2039–2045. doi: 10.1139/v05-223. DOI

Haynes W.M. CRC Handbook of Chemistry and Physics. CRC Press; Boca Raton, FL, USA: 2014.

George G.A., Cash G.A., Rintoul L. Cure monitoring of aerospace epoxy resins and prepregs by Fourier transform infrared emission spectroscopy. Polym. Int. 1996;41:169–182. doi: 10.1002/(SICI)1097-0126(199610)41:2<169::AID-PI606>3.0.CO;2-2. DOI

Cividanes L.S., Simonetti E.A.N., Moraes M.B., Fernandes F.W., Thim G.P. Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: A comprehensive review. Polym. Eng. Sci. 2014;54:2461–2469. doi: 10.1002/pen.23775. DOI

Riccardi C.C., Adabbo H.E., Williams R.J.J. Curing reaction of epoxy resins with diamines. J. Appl. Polym. Sci. 1984;29:2481–2492. doi: 10.1002/app.1984.070290805. DOI

Wan J., Li C., Bu Z.-Y., Xu C.-J., Li B.-G., Fan H. A comparative study of epoxy resin cured with a linear diamine and a branched polyamine. Chem. Eng. J. 2012;188:160–172. doi: 10.1016/j.cej.2012.01.134. DOI

Hayes B.S., Moulton R., Dixon D., Vorobyev L. Epoxy Resin Curing Agents and Epoxy Resin Compositions. 7,008,555. U.S. Patent. 2006 Mar 7;

González M.G., Cabanelas J.C., Baselga J. Applications of FTIR on epoxy resins-identification, monitoring the curing process, phase separation and water uptake. Infrared Spectrosc. Sci. Eng. Technol. 2012;2:261–284.

Van Krevelen D.W. Some basic aspects of flame resistance of polymeric materials. Polymer. 1975;16:615–620. doi: 10.1016/0032-3861(75)90157-3. DOI

Gao M., Sun Y. Flame retardancy and thermal degradation behaviors of epoxy resins containing bisphenol a bis (diphenyl phosphate) oligomer. Polym. Eng. Sci. 2013;53:1125–1130. doi: 10.1002/pen.23360. DOI

Jiao C., Zhuo J., Chen X., Li S., Wang H. Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid. J. Therm. Anal. Calorim. 2013;114:253–259. doi: 10.1007/s10973-012-2867-4. DOI

Zhang J., Zhang W., Liang J., Guan D. Effect of Carbon Nanotubes Combined with Hexaphenoxycyclotriphosphazene on the Flame Retardancy of Epoxy Resin; Proceedings of the 2015 3rd International Conference on Advances in Energy and Environmental Science; Zhuhai, China. 25–26 July 2015.

Liu J., He Z., Wu G., Zhang X., Zhao C., Lei C. Synthesis of a novel nonflammable eugenol-based phosphazene epoxy resin with unique burned intumescent char. Chem. Eng. J. 2020:124620. doi: 10.1016/j.cej.2020.124620. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...