Pupil size variation as a response to stress in European catfish and its application for social stress detection in albino conspecifics

. 2020 ; 15 (12) : e0244017. [epub] 20201231

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33382718

Hormonal changes such as increased cortisol level in blood plasma in response to stress and social environmental stimuli are common among vertebrates including humans and typically accompanied by other physiological processes, such as changes in body pigmentation and/or pupil dilatation. The role of pupil size variation (PSV) as a response to stress have yet to be investigated in fish. We exposed albino and pigmented European catfish to short-term stress and measured changes in pupil size and cortisol level. Albinos showed lower pupil dilatation and higher cortisol levels than did pigmented conspecifics. A clear positive relationship between pupil dilatation and cortisol concentrations was observed for both pigmented and albino specimens, suggesting that PSV can be used as a stress indicator in fish, irrespective of albino's inability to express social communication by coloring. During the follow-up, we investigated whether a penultimate contest between albino individuals would impact contestants' social stress during subsequent contact. We observed PSV during the contact of unfamiliar albino catfish with different penultimate experiences (winner (W) and/or loser (L)). Then, the following treatment combinations were tested: WW, WL and LL. Twenty-four-hour contact of two unfamiliar catfish resulted in higher pupil dilatation among individuals with previous winner experience. Among treatment combinations, a WL contest displayed the highest pupil dilatation for winners. PSV reflected socially induced stress in individuals that was accompanied by the "winner" experience and dominancy in albinos. To conclude, the present study validates pupil dilatation as a non-invasive method to evaluate stress level in pigmented as well as albino fish in various contexts.

Zobrazit více v PubMed

Pottinger TG, Carrick TR. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen Comp Endocrinol. 1999; 116:122–132. 10.1006/gcen.1999.7355 PubMed DOI

Sloman KA, Metcalfe NB, Taylor AC, Gilmour KM. Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout. Physiol Biochem Zool. 2001; 74:383–389. 10.1086/320426 PubMed DOI

Ellis T, Yildiz HY, López-Olmeda J, Spedicato MT, Tort L, Øverli Ø, et al. Cortisol and finfish welfare. Fish Physiol Biochem. 2012; 38:163–188. 10.1007/s10695-011-9568-y PubMed DOI

Øverli Ø, Harris CA, Winberg S. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain Behav Evol. 1999; 54:263–275. 10.1159/000006627 PubMed DOI

Fernandes-de-Castilho M, Pottinger TG, Volpato GL. Chronic social stress in rainbow trout: Does it promote physiological habituation? Gen Comp Endocrinol. 2008; 155:141–147. 10.1016/j.ygcen.2007.04.008 PubMed DOI

Winberg S, Nilsson GE. Roles of brain monoamine neurotransmitters in agonistic behaviour and stress reactions, with particular reference to fish. Comp Biochem Physiol C Toxicol Pharmacol. 1993; 106(3):597–614. 10.1016/0742-8413(93)90216-8 DOI

Øverli Ø, Korzan WJ, Höglund E, Winberg S, Bollig H, Watt M, et al. Stress coping style predicts aggression and social dominance in rainbow trout. Horm Behav. 2004; 45(4):235–241. 10.1016/j.yhbeh.2003.12.002 PubMed DOI

Kittilsen S, Schjolden J, Beitnes-Johansen I, Shaw JC, Pottinger TG, Sørensen C, et al. Melanin-based skin spots reflect stress responsiveness in salmonid fish. 2009; Horm Behav. 56(3):292–298. 10.1016/j.yhbeh.2009.06.006 PubMed DOI

Kittilsen S, Johansen IB, Braastad BO, Øverli Ø. Pigments, parasites and personality: Towards a unifying role for steroid hormones? 2012; PLoS One 7(4):e34281 10.1371/journal.pone.0034281 PubMed DOI PMC

Backström T, Heynen M, Brännäs E, Nilsson J, Winberg S, Magnhagen C. Social stress effects on pigmentation and monoamines in Arctic charr. Behav Brain Res. 2015; 291:103–107. 10.1016/j.bbr.2015.05.011 PubMed DOI

Carden SM, Boissy RE, Schoettker PJ, Good WV. Albinism: modern molecular diagnosis. Br J Ophthalmol. 1998; 82:189–1995. 10.1136/bjo.82.2.189 PubMed DOI PMC

Fuller LJ. Effects of the albino gene upon behaviour of mice. Anim Behav. 1967; 15(4):467–470. 10.1016/0003-3472(67)90045-0 PubMed DOI

DeFries JC. Pleiotropic effects of albinism on open field behaviour in mice. Nature. 1969; 221:65–66. 10.1038/221065a0 PubMed DOI

Slavík O, Horký P, Wackermannová M. How does agonistic behaviour differ in albino and pigmented fish? PeerJ. 2016; 4:e1937 10.7717/peerj.1937 PubMed DOI PMC

Slavík O, Horký P, Maciak M. Ostracism of an albino individual by a group of pigmented catfish. PLoS One. 2015; 10:e0128279 10.1371/journal.pone.0128279 PubMed DOI PMC

Uieda W. Behavior of an albino vampire bat, Desmodus rotundus (E. Geoffroy) (Chiroptera, Phyllostomidae), in captivity. Rev Bras Zool. 2001; 18(2):641–644. 10.1590/S0101-81752001000200031. DOI

Suter HC, Huntingford FA. Eye colour in juvenile Atlantic salmon: effects of social status, aggression and foraging success. J Fish Biol. 2002; 61:606–614. 10.1111/j.1095-8649.2002.tb00899.x DOI

Volpato GL, Luchiari AC, Duarte CRA, Barreto RE, Ramanzini GC. Eye color as an indicator of social rank in the fish Nile tilapia. Braz J Med Biol Res. 2003; 36(12):1659–1663. 10.1590/S0100-879X2003001200007 PubMed DOI

Miyai CA, Carretero Sanches FH, Costa TM, Colpo KD, Volpato GL, Barreto RE. The correlation between subordinate fish eye colour and received attacks: a negative social feedback mechanism for the reduction of aggression during the formation of dominance hierarchies. Zoology. 2011; 114(6):335–339. 10.1016/j.zool.2011.07.001 PubMed DOI

Freitas RHA, Negrão CA, Felício AKC, Volpato GL. Eye darkening as a reliable, easy and inexpensive indicator of stress in fish. Zoology. 2014; 117(3):179–184. 10.1016/j.zool.2013.09.005 PubMed DOI

Hubená P, Horký P, Slavík O. Test-dependent expression of behavioral syndromes: A study of aggressiveness, activity, and stress of chub. Aggress Behav. 2020; 46(5):412–424. 10.1002/ab.21909 PubMed DOI

Wang CA, Munoz DP. A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr Opin Neurobiol. 2015; 33:134–140. 10.1016/j.conb.2015.03.018 PubMed DOI

Beatty J. Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol Bull. 1982; 91(2):276–292. 10.1037/0033-2909.91.2.276 PubMed DOI

Borgdorff P. Respiratory fluctuations in pupil size. Am J Physiol. 1975; 228:1094–1102. 10.1152/ajplegacy.1975.228.4.1094 PubMed DOI

Loewenfeld IE. Mechanisms of reflex dilatation of the pupil; historical review and experimental analysis. Doc Ophthalmol. 1958; 12:185–448. 10.1007/BF00913471 PubMed DOI

Bardeen JR, Daniel TA. An eye-tracking examination of emotion regulation, attentional bias, and pupillary response to threat stimuli. Cognit Ther Res. 2017; 41:853–866. 10.1007/s10608-017-9860-y DOI

Macatee RJ, Albanese BJ, Schmidt NB, Cougle JR. The moderating influence of heart rate variability on stressor-elicited change in pupillary and attentional indices of emotional processing: an eye-tracking study. Biol Psychol. 2017; 123:83–93. 10.1016/j.biopsycho.2016.11.013 PubMed DOI PMC

Oka S, Chapman CR, Kim B, Nakajima I, Shimizu O, Oi Y. Pupil dilation response to noxious stimulation: effect of varying nitrous oxide concentration. Clin Neurophysiol. 2007; 118(9):2016–2024. 10.1016/j.clinph.2007.04.023 PubMed DOI

Charier DJ, Zantour D, Pichot V, Chouchou F, Barthelemy J-CM, Roche F, et al. Assessing pain using the variation coefficient of pupillary diameter. J Pain. 2017; 18:1346–1353. 10.1016/j.jpain.2017.06.006 PubMed DOI

Franzen PL, Buysse DJ, Dahl RE, Thompson W, Siegle GJ. Sleep deprivation alters pupillary reactivity to emotional stimuli in healthy young adults. Biol Psychol. 2009; 80(3):300–305. 10.1016/j.biopsycho.2008.10.010 PubMed DOI PMC

Strauss GP, Ossenfort KL, Whearty KM. Reappraisal and distraction emotion regulation strategies are associated with distinct patterns of visual attention and differing levels of cognitive demand. PLoS One. 2016; 11(11):e0162290 10.1371/journal.pone.0162290 PubMed DOI PMC

Hoehl S, Hellmer K, Johansson M, Gredebäck G. Itsy bitsy spider …: Infants react with increased arousal to spiders and snakes. Front Psychol. 2017; 8:1710 10.3389/fpsyg.2017.01710 PubMed DOI PMC

Partala T, Surakka V. Pupil size variation as an indication of affective processing. Int J Hum Comput Stud. 2003; 59(1–2):185–198. 10.1016/S1071-5819(03)00017-X DOI

Bradley MM, Miccoli L, Escrig MA, Lang PJ. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 2008; 45(4):602–607. 10.1111/j.1469-8986.2008.00654.x PubMed DOI PMC

Larsen RS, Waters J. Neuromodulatory correlates of pupil dilation. Front Neural Circuits. 2018; 12:21 10.3389/fncir.2018.00021 PubMed DOI PMC

Schriver BJ, Bagdasarov S, Wang Q. Pupil-linked arousal modulates behavior in rats performing a whisker deflection direction discrimination task. J Neurophysiol. 2018; 120(4):1655–1670. 10.1152/jn.00290.2018 PubMed DOI PMC

Ebitz RB, Pearson MJ, Platt ML. Pupil size and social vigilance in rhesus macaques. Front Neurosci. 2014; 8:100 10.3389/fnins.2014.00100 PubMed DOI PMC

Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A. Measuring cortisol in human psychobiological studies. Physiol Behav. 2007; 90(1):43–53. 10.1016/j.physbeh.2006.08.025 PubMed DOI

Finke JB, Behrje A, Schächinger H. Acute stress enhances pupillary responses to erotic nudes: Evidence for differential effects of sympathetic activation and cortisol. Biol Psychol. 2018; 137:73–82. 10.1016/j.biopsycho.2018.07.005 PubMed DOI

Barreto RE, Volpato GL. Evaluating feeding as unconditioned stimulus for conditioning of an endocrine effect in Nile tilapia. Physiol Behav. 2007; 92:867–872. 10.1016/j.physbeh.2007.06.013 PubMed DOI

Barreto RE, Volpato GL. Ventilation rates indicate stress-coping styles in Nile tilapia. J Biosci. 2011; 36:851–855. 10.1007/s12038-011-9111-4 PubMed DOI

Zayan R. The specificity of social stress. Behav Processes. 1991; 25(2–3):81–93. 10.1016/0376-6357(91)90011-N PubMed DOI

Sloman KA, Montpetit CJ, Gilmour KM. Modulation of catecholamine release and cortisol secretion by social interactions in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol. 2002; 127(2):136–146. 10.1016/S0016-6480(02)00033-3 PubMed DOI

Backström T, Winberg S. Central corticotropin releasing factor and social stress. Front Neurosci. 2013; 7:117 10.3389/fnins.2013.00117 PubMed DOI PMC

Dugatkin LA. Winner and loser effects and the structure of dominance hierarchies. Behav Ecol. 1997; 8(6):583–587. 10.1093/beheco/8.6.583 DOI

Hsu Y, Wolf LL. The winner and loser effect: integrating multiple experiences. Anim Behav. 1999; 57(4):903–910. 10.1006/anbe.1998.1049 PubMed DOI

Hsu Y, Wolf LL. The winner and loser effect: what fighting behaviours are influenced? Anim Behav. 2001; 61(4):777–786. 10.1006/anbe.2000.1650 DOI

Cucherousset J, Horký P, Slavík O, Ovidio M, Arlinghaus R, Boulȇtreau S, et al. Ecology, behaviour and management of the European catfish. Rev Fish Biol Fish. 2018; 28:177–190. 10.1007/s11160-017-9507-9 DOI

Linhart O, Štěch L, Švarc J, Rodina M, Audebert JP, Grecu J, et al. The culture of the European catfish, Silurus glanis, in the Czech Republic and in France. Aquat Living Resour. 2002; 15(2):139–144. 10.1016/S0990-7440(02)01153-1 DOI

Boujard T. Diel rhythms of feeding activity in the European catfish, Silurus glanis. Physiol Behav. 1996; 58(4):641–645. 10.1016/0031-9384(95)00109-V PubMed DOI

Slavík O, Pešta M, Horký P. Effect of grading on energy consumption in European catfish Silurus glanis. Aquaculture. 2011; 313: 73–78. 10.1016/j.aquaculture.2011.01.002 DOI

Slavík O, Maciak M, Horký P. Shelter use of familiar and unfamiliar groups of juvenile European catfish Silurus glanis. Appl Anim Behav Sci. 2012; 142(1–2):116–123. 10.1016/j.applanim.2012.09.005 DOI

Dingerkus G, Seret B, Guilbert E. The first albino wels, Silurus glanis Linnaeus, 1758, from France, with a review of albinism in catfishes (Teleostei: Siluriformes). Cybium. 1991; 15(3):185–188.

Nobile AB, Freitas-Souza D, Pontieri de Lima F, Acosta AA, Da Silva RJ. Partial albinism in Rhinelepis aspera from the Upper Paraná Basin, Brazil, with a review of Albinism in South American freshwater fishes. Rev Mex Biodivers. 2016; 87:531–534. 10.1016/j.rmb.2016.04.005 DOI

Manoel PS, Ono ER, Alves MIB. First report of albinism in the South American catfish Imparfinis mirini (Siluriformes: Heptapteridae). Rev Mex Biodivers. 2017; 88:471–473. 10.1016/j.rmb.2017.01.030 DOI

Buchanan K, Burt de Perera T, Carere C, Carter T, Hailey A, Hubrecht R, et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav. 2012; 83(1):301–309. 10.1016/j.anbehav.2011.10.031 DOI

Li Z-H, Velíšek J, Žlábek V, Grabic R, Máchová J, Kolářová J, et al. Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): Effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater. 2011; 185(2–3):870–880. 10.1016/j.jhazmat.2010.09.102 PubMed DOI

Svobodová Z, Pravda D, Palacková J. Unified methods of hematological examination of fish. Vodňany: VÚRH, Edition Methods No. 20, 1991

Stará A, Zusková E, Kouba A, Velíšek J. Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii). Sci Total Environ. 2016; 566–567:733–740. 10.1016/j.scitotenv.2016.05.113 PubMed DOI

Slavík O, Horký P, Douda K, Velíšek J, Kolářová J, Lepič P. Parasite-induced increases in the energy costs of movement of host freshwater fish. Physiol Behav. 2017; 171:127–134. 10.1016/j.physbeh.2017.01.010 PubMed DOI

Chase ID, Bartolomeo C, Dugatkin LA. Aggressive interactions and inter-contest interval: How long do winners keep winning? Anim Behav. 1994; 48(2): 393–400. 10.1006/anbe.1994.1253 DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9:671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997; 53(3):983–997. 10.2307/2533558 PubMed DOI

Pottinger TG, Pickering AD. The influence of social interaction on the acclimation of rainbow trout, Oncorhynchus mykiss (Walbaum) to chronic stress. J Fish Biol. 1992; 41(3):435–447. 10.1111/j.1095-8649.1992.tb02672.x DOI

Barreto RE, Volpato GL. Caution for using ventilatory frequency as an indicator of stress in fish. Behav Processes. 2004; 66(1):43–51. 10.1016/j.beproc.2004.01.001 PubMed DOI

Kramer SE, Teunissen CE, Zekveld AA. Cortisol, chromogranin A, and pupillary responses evoked by speech recognition tasks in normally hearing and hard-of-hearing listeners: a pilot study. Ear Hear. 2016; 37:126–135. 10.1097/AUD.0000000000000311 PubMed DOI

Hsu Y, Earley RL, Wolf LL. Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol Rev. 2006; 81(1):33–74. 10.1017/S146479310500686X PubMed DOI

Earley RL, Lu CK, Lee IH, Wong SC, Hsu Y. Winner and loser effects are modulated by hormonal states. Front Zool. 2013; 10:6 10.1186/1742-9994-10-6 PubMed DOI PMC

Oliveira RF, Silva A, Canário AVM. Why do winners keep wining? Androgen mediation of winner but not loser effects in cichlid fish. Proc Royal Soc B. 2009; 276(1665):2249–2256. 10.1098/rspb.2009.0132 PubMed DOI PMC

Rutte C, Taborsky M, Brinkhof MWG. What sets the odds of winning and losing? Trends Ecol Evol. 2006; 21(1):16–21. 10.1016/j.tree.2005.10.014 PubMed DOI

Creel S, Dantzer B, Goymann W, Rubenstein DR. The ecology of stress: effects of the social environment. Funct Ecol. 2013; 27(1):66–80. 10.1111/j.1365-2435.2012.02029.x DOI

Mileva VR, Fitzpatrick JL, Marsh-Rollo S, Gilmour KM, Wood CM, Balshine S. The stress response of the highly social African cichlid Neolamprologus pulcher. Physiol Biochem Zool. 2009; 82(6):720–729. 10.1086/605937 PubMed DOI

Ligocki YI, Earley RL, Hellmann JK, Hamilton IM. Variation in glucocorticoid levels in relation to direct and third-party interactions in a social cichlid fish. Physiol Behav. 2015; 151:386–394. 10.1016/j.physbeh.2015.08.004 PubMed DOI

Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT. Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis. 2008; 14:782–806. PubMed PMC

Buhusi CV, Perera D, Meck WH. Memory for timing and auditory signals in albino and pigmented rats. J Exp Psychol Anim Behav Process. 2005; 31(1):18–30. 10.1037/0097-7403.31.1.18 PubMed DOI

Hupfeld D, Hoffmann KP. Motion perception in rats (Rattus norvegicus sp.): Deficits in albino Wistar rats compared to pigmented Long-Evans rats. Behav Brain Res. 2006; 170(1):29–33. 10.1016/j.bbr.2006.01.022 PubMed DOI

Abeelen van JHF, Kroes WH. Albinism and mouse behaviour. Genetica. 1967; 38:419–429. 10.1007/BF01507473 PubMed DOI

Owen K, Thiessen DD, Lindzey G. Acrophobic and photophobic responses associated with the albino locus in mice. Behav Genet. 1970; 1:249–255. 10.1007/BF01074656 PubMed DOI

Prusky GT, Harker KT, Douglas MR, Whisaw IQ. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res. 2002; 136(2): 339–348. 10.1016/S0166-4328(02)00126-2 PubMed DOI

Backström T, Johansson K, Brännäs E, Nilsson J, Magnhagen C. Short-term stress: effects on cortisol levels and carotenoid spots in Arctic charr (Salvenius alpinus). Can J Zool. 2016; 94:707–712. 10.1139/cjz-2016-0043 DOI

Magnhagen C, Backström T, Nilsson J, Brännäs E. Oxygen consumption and swimming performance in Arctic charr with different pigmentation patterns. Appl Anim Behav Sci. 2018; 202:119–124. 10.1016/j.applanim.2018.01.006 DOI

Lund PM, Taylor JS. Lack of adequate sun protection for children with oculocutaneous albinism in South Africa. BMC Public Health. 2008; 8:225 10.1186/1471-2458-8-225 PubMed DOI PMC

Li Y, Geng X, Bao L, Elaswad A, Huggins KW, Dunham R, et al. A deletion in the Hermansky-Pudlak syndrome 4 (Hps4) gene appears to be responsible for albinism in channel catfish. Mol Genet Genom. 2017; 292:663–670. 10.1007/s00438-017-1302-8 PubMed DOI

Cohen MS, Hawkins MB, Knox-Hayes J, Vinton AC, Cruz A. A laboratory study of host use by the cuckoo catfish Synodontis multipunctatus. Environ Biol Fishes. 2018; 101:1417–1425. 10.1007/s10641-018-0788-1 DOI

Ducrest A-L, Keller L, Roulin A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol. 2008; 23(9):502–510. 10.1016/j.tree.2008.06.001 PubMed DOI

Brännäs E, Backström T, Nilsson J, Carlberg H, Stien LH, Magnhagen C. Distinguishing Arctic charr with different stress coping styles by visual screening of spottiness–reliability and consistency over time. J Zool. 2016; 300:213–220. 10.1111/jzo.12374 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...