The effect of parasitism on boldness and sheltering behaviour in albino and pigmented European catfish (Silurus glanis)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39080432
PubMed Central
PMC11289108
DOI
10.1038/s41598-024-67645-y
PII: 10.1038/s41598-024-67645-y
Knihovny.cz E-zdroje
- MeSH
- agrese fyziologie MeSH
- chování zvířat * fyziologie MeSH
- interakce hostitele a parazita * MeSH
- nemoci ryb parazitologie MeSH
- pigmentace * fyziologie MeSH
- sumci * fyziologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Parasites can change the behaviour of their hosts, but little attention has been given to the relationship between parasite effects on host behaviour and colouration. The correlation between disrupted melanin production and alterations in various physiological and behavioural traits, e.g., aggression, shoaling behaviour, stress responsiveness and sensitivity to brood parasitism, has been reported in albino fish. We hypothesized that parasitism would affect the behaviour of albino and pigmented conspecifics differently. In laboratory conditions, we infested a group of pigmented and a group of albino individuals of European catfish Silurus glanis with glochidia of two Uninoidea species, namely, the native species Anodonta anatina and the invasive species Sinanodonta woodiana, and investigated the effect of parasitization on the boldness and sheltering behaviour of the hosts. The behaviour of albino individuals differed from that of pigmented conspecifics both before and after parasitization. Parasitization with glochidia did not affect sheltering behaviour, but it increased boldness in pigmented individuals, whereas albino individuals did not exhibit any changes in behaviour. Sheltering results were consistent in both binomial and continuous variable analyses, whereas boldness was significant only in the binomial analyses. Our results demonstrate the reduced susceptibility of the albino phenotype to glochidia infestation, together with questions of the choice of analyses.
Zobrazit více v PubMed
Barber, I., Hoare, D. & Krause, J. Effects of parasites on fish behaviour: A review and evolutionary perspective. Rev. Fish Biol. Fish.10, 131–165 (2000).10.1023/A:1016658224470 DOI
Barber, I. & Dingemanse, N. J. Parasitism and the evolutionary ecology of animal personality. Philos. Trans. R. Soc. B Biol. Sci.365, 4077–4088 (2010).10.1098/rstb.2010.0182 PubMed DOI PMC
Poulin, R. Parasite Manipulation of Host Behavior: An Update and Frequently Asked Questions. Advances in the Study of Behavior Vol. 41 (Elsevier, 2010).
Barber, I., Mora, A. B., Payne, E. M., Weinersmith, K. L. & Sih, A. Parasitism, personality and cognition in fish. Behav. Process.141, 205–219 (2017).10.1016/j.beproc.2016.11.012 PubMed DOI
Ezenwa, V. O. et al. Host behaviour-parasite feedback: An essential link between animal behaviour and disease ecology. Proc. R. Soc. B Biol. Sci.283, 20153078 (2016).10.1098/rspb.2015.3078 PubMed DOI PMC
Gering, E. et al. Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host. Nat. Commun.10.1038/s41467-021-24092-x (2021). 10.1038/s41467-021-24092-x PubMed DOI PMC
Reisinger, L. S., Petersen, I., Hing, J. S., Davila, R. L. & Lodge, D. M. Infection with a trematode parasite differentially alters competitive interactions and antipredator behaviour in native and invasive crayfish. Freshw. Biol.60, 1581–1595 (2015).10.1111/fwb.12590 DOI
Kaldonski, N., Perrot-Minnot, M. J. & Cézilly, F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim. Behav.74, 1311–1317 (2007).10.1016/j.anbehav.2007.02.027 DOI
Médoc, V., Rigaud, T., Bollache, L. & Beisel, J. N. A manipulative parasite increasing an antipredator response decreases its vulnerability to a nonhost predator. Anim. Behav.77, 1235–1241 (2009).10.1016/j.anbehav.2009.01.029 DOI
Dijkstra, P. D. et al. The melanocortin system regulates body pigmentation and social behaviour in a colour polymorphic cichlid fish. Proc. R. Soc. B Biol. Sci.284, 20162838 (2017).10.1098/rspb.2016.2838 PubMed DOI PMC
Ducrest, A., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol.23, 502–510 (2008). 10.1016/j.tree.2008.06.001 PubMed DOI
Kittilsen, S. et al. Melanin-based skin spots reflect stress responsiveness in salmonid fish. Horm. Behav.56, 292–298 (2009). 10.1016/j.yhbeh.2009.06.006 PubMed DOI
Maan, M. E., Van Der Spoel, M., Jimenez, P. Q., Van Alphen, J. J. M. & Seehausen, O. Fitness correlates of male coloration in a Lake Victoria cichlid fish. Behav. Ecol.17, 691–699 (2006).10.1093/beheco/ark020 DOI
Kittilsen, S., Johansen, I. B., Braastad, B. O. & Øverli, Ø. Pigments, parasites and personalitiy: Towards a unifying role for steroid hormones?. PLoS One7, e34281 (2012). 10.1371/journal.pone.0034281 PubMed DOI PMC
Slavík, O., Horký, P. & Wackermannová, M. How does agonistic behaviour differ in albino and pigmented fish?. PeerJ4, e1937 (2016). 10.7717/peerj.1937 PubMed DOI PMC
Ren, J. Q., McCarthy, W. R., Zhang, H., Adolph, A. R. & Li, L. Behavioral visual responses of wild-type and hypopigmented zebrafish. Vis. Res.42, 293–299 (2002). 10.1016/S0042-6989(01)00284-X PubMed DOI
Slavík, O., Horký, P., Velíšek, J. & Valchářová, T. Pupil size variation as a response to stress in European catfish and its application for social stress detection in albino conspecifics. PLoS One15, e0244017 (2020). 10.1371/journal.pone.0244017 PubMed DOI PMC
Slavík, O., Horký, P., Valchářová, T., Pfauserová, N. & Velíšek, J. Comparative study of stress responses, laterality and familiarity recognition between albino and pigmented fish. Zoology150, 125982 (2022). 10.1016/j.zool.2021.125982 PubMed DOI
Cohen, M. S., Hawkins, M. B., Knox-Hayes, J., Vinton, A. C. & Cruz, A. A laboratory study of host use by the cuckoo catfish Synodontis multipunctatus. Environ. Biol. Fishes101, 1417–1425 (2018).10.1007/s10641-018-0788-1 DOI
Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. North Am. Benthol. Soc.27, 370–394 (2008).10.1899/07-093.1 DOI
Rock, S. L., Watz, J., Nilsson, P. A. & Österling, M. Effects of parasitic freshwater mussels on their host fishes: A review. Parasitology149, 1958–1975. 10.1017/S0031182022001226 (2022). 10.1017/S0031182022001226 PubMed DOI PMC
Horký, P., Douda, K., Maciak, M., Závorka, L. & Slavík, O. Parasite-induced alterations of host behaviour in a riverine fish: The effects of glochidia on host dispersal. Freshw. Biol.59, 1452–1461 (2014).10.1111/fwb.12357 DOI
Österling, E. M., Ferm, J. & Piccolo, J. J. Parasitic freshwater pearl mussel larvae (Margaritiferamargaritifera L.) reduce the drift-feeding rate of juvenile brown trout (Salmotrutta L.). Environ. Biol. Fishes97, 543–549 (2014).10.1007/s10641-014-0251-x DOI
Douda, K. et al. Direct impact of invasive bivalve (Sinanodonta woodiana) parasitism on freshwater fish physiology: Evidence and implications. Biol. Invasions19, 989–999 (2017).10.1007/s10530-016-1319-7 DOI
Slavík, O. et al. Parasite-induced increases in the energy costs of movement of host freshwater fish. Physiol. Behav.171, 127–134 (2017). 10.1016/j.physbeh.2017.01.010 PubMed DOI
Horký, P., Slavık, O. & Douda, K. Altered thermoregulation as a driver of host behaviour in glochidia-parasitised fish. J. Exp. Biol.10.1242/jeb.184903 (2019). 10.1242/jeb.184903 PubMed DOI
Filipsson, K. et al. Heavy loads of parasitic freshwater pearl mussel (Margaritiferamargaritifera L.) larvae impair foraging, activity and dominance performance in juvenile brown trout (Salmotrutta L.). Ecol. Freshw. Fish27, 70–77 (2018).10.1111/eff.12324 DOI
Kekäläinen, J., Pirhonen, J. & Taskinen, J. Do highly ornamented and less parasitized males have high quality sperm ?—An experimental test for parasite-induced reproductive trade-offs in European minnow (Phoxinus phoxinus). Ecol. Evol.4, 4237–4246 (2014). 10.1002/ece3.1267 PubMed DOI PMC
Dingerkus, G., Séret, B. & Guilbert, E. The first albinos wels, Silurus glanis Linnaeus, 1758, from France, with a review of albinism in catfishes (Teleostei: siluriformes). Cybium (Paris)15, 185–188 (1991).
Linhart, O. The culture of the European catfish, Silurus glanis, in the Czech Republic and in France. Aquat. Liv. Resour.15, 139–144 (2002).10.1016/S0990-7440(02)01153-1 DOI
Ellegren, H., Lindgren, G., Primmer, C. R. & Møller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature389, 593–596 (1997). 10.1038/39303 PubMed DOI
Ozerov, M. Y. et al. Differential expression and alternative splicing analyses of multiple tissues reveal albinism-associated genes in the Wels catfish (Silurus glanis). Comp. Biochem. Physiol. B Biochem. Mol. Biol.271, 110941 (2024). 10.1016/j.cbpb.2024.110941 PubMed DOI
Baxter, L. L., Watkins-Chow, D. E., Pavan, W. J. & Loftus, S. K. A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res.32, 348–358 (2019). 10.1111/pcmr.12743 PubMed DOI PMC
Simeonov, D. R. et al. DNA variations in oculocutaneous albinism: An updated mutation list and current outstanding issues in molecular diagnostics. Hum. Mutat.34, 827–835 (2013). 10.1002/humu.22315 PubMed DOI PMC
Urbańska, M., Kamocki, A., Kirschenstein, M. & Ożgo, M. The Chinese pond mussel Sinanodonta woodiana demographically outperforms European native mussels. Sci. Rep.11, 1–11 (2021). 10.1038/s41598-021-96568-1 PubMed DOI PMC
Crane, A. L., Fritts, A. K., Mathis, A., Lisek, J. C. & Barnhart, M. C. Do gill parasites influence the foraging and antipredator behaviour of rainbow darters, Etheostoma caeruleum?. Anim. Behav.82, 817–823 (2011).10.1016/j.anbehav.2011.07.015 DOI
Alfonso, S. et al. Coping styles in European sea bass: The link between boldness, stress response and neurogenesis. Physiol. Behav.207, 76–85 (2019). 10.1016/j.physbeh.2019.04.020 PubMed DOI
Huntingford, F. A. et al. Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. J. Fish Biol.76, 1576–1591 (2010). 10.1111/j.1095-8649.2010.02582.x PubMed DOI
Millot, S., Bégout, M. L. & Chatain, B. Risk-taking behaviour variation over time in sea bass Dicentrarchus labrax: Effects of day-night alternation, fish phenotypic characteristics and selection for growth. J. Fish Biol.75, 1733–1749 (2009). 10.1111/j.1095-8649.2009.02425.x PubMed DOI
Castanheira, M. F. et al. Coping styles in farmed fish: Consequences for aquaculture. Rev. Aquac.9, 23–41 (2017).10.1111/raq.12100 DOI
Elipot, Y., Hinaux, H., Callebert, J. & Rétaux, S. Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr. Biol.23, 1–10 (2013). 10.1016/j.cub.2012.10.044 PubMed DOI
Mafli, A., Wakamatsu, K. & Roulin, A. Melanin-based coloration predicts aggressiveness and boldness in captive eastern Hermann’s tortoises. Anim. Behav.81, 859–863 (2011).10.1016/j.anbehav.2011.01.025 DOI
Mateos-Gonzalez, F. & Senar, J. C. Melanin-based trait predicts individual exploratory behaviour in siskins, Carduelisspinus. Anim. Behav.83, 229–232 (2012).10.1016/j.anbehav.2011.10.030 DOI
Schweitzer, C., Motreuil, S. & Dechaume-Moncharmont, F. X. Coloration reflects behavioural types in the convict cichlid, Amatitlaniasiquia. Anim. Behav.105, 201–209 (2015).10.1016/j.anbehav.2015.04.024 DOI
Santostefano, F., Fanson, K. V., Endler, J. A. & Biro, P. A. Behavioral, energetic, and color trait integration in male guppies: Testing the melanocortin hypothesis. Behav. Ecol.30, 1539–1547 (2019).10.1093/beheco/arz109 DOI
Dupont, S., Baudry, E., Juette, P. & Gasparini, J. Eumelanic coloration and age interact to influence breath rate following a boldness test in urban pigeons. Glob. J. Ecol.5, 115–119 (2020).
Carlson, A., Bradley, E. & William, L. Trait Covariances in Eastern Box Turtles Do Not Support Pleiotropic Effects of the Melanocortin System on Color, Behavior, and Stress Physiology Published By: Society for the Study of Amphibians and Reptiles Trait Covariances in Eastern Box Turtles Do. 56, 478–488 (2023).
Bubac, C. M. et al. Genetic association with boldness and maternal performance in a free-ranging population of grey seals (Halichoerus grypus). Heredity (Edinb)127, 35–51 (2021). 10.1038/s41437-021-00439-4 PubMed DOI PMC
Dzieweczynski, T. L., Kane, J. L., Campbell, B. A. & Lavin, L. E. Fluoxetine exposure impacts boldness in female Siamese fighting fish, Bettasplendens. Ecotoxicology25, 69–79 (2016). 10.1007/s10646-015-1568-8 PubMed DOI
Bilandžija, H., Ma, L., Parkhurst, A. & Jeffery, W. R. A potential benefit of albinism in Astyanax cavefish: Downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One8, 1–14 (2013).10.1371/journal.pone.0080823 PubMed DOI PMC
O’Gorman, M. et al. Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Curr. Biol.31, 3694-3701.e4 (2021). 10.1016/j.cub.2021.06.077 PubMed DOI
Kehas, A. J., Theoharides, K. A. & Gilbert, J. J. Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin Tripneustes ventricosus. Mar. Biol.146, 1111–1117 (2005).10.1007/s00227-004-1514-4 DOI
Valchářová, T. et al. Stressful daylight: Differences in diel rhythmicity between albino and pigmented fish. Front. Ecol. Evol.10.3389/fevo.2022.890874 (2022).10.3389/fevo.2022.890874 DOI
van Abeelen, J. H. F. & Kroes, H. W. Albinism and mouse behaviour. Genetica38, 419–429 (1967).10.1007/BF01507473 PubMed DOI
Huntingford, F. A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol.65, 122–142 (2004).10.1111/j.0022-1112.2004.00562.x DOI
Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour142, 1207–1221 (2005).10.1163/156853905774539382 DOI
Glover, K. A., Taggart, J. B., Skaala, O. & Teale, A. J. A study of inadvertent domestication selection during start-feeding of brown trout families. J. Fish Biol.64, 1168–1178 (2004).10.1111/j.0022-1112.2004.00376.x DOI
Ibáñez, A., Pellitteri-Rosa, D., Sacchi, R., López, P. & Martín, J. Melanin-based coloration covaries with hiding and exploratory behavior in male Spanish terrapins. Ethology122, 30–36 (2016).10.1111/eth.12440 DOI
Chowdhury, M. M. R., Marjomäki, T. J. & Taskinen, J. Effect of glochidia infection on growth of fish: Freshwater pearl mussel Margaritifera margaritifera and brown trout Salmo trutta. Hydrobiologia848, 3179–3189 (2021).10.1007/s10750-019-03994-4 DOI
Filipsson, K. et al. Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta). Parasitol. Res.116, 1353–1360 (2017). 10.1007/s00436-017-5413-2 PubMed DOI PMC
Thomas, G. R., Taylor, J. & Garcia de Leaniz, C. Does the parasitic freshwater pearl mussel M.margaritifera harm its host?. Hydrobiologia735, 191–201 (2014).10.1007/s10750-013-1515-8 DOI
Milinski, M. Constraints placed by predators on feeding behaviour. In The Behaviour of Teleost Fishes (ed. Pitcher, T. J.) 236–252 (Springer, 1986). 10.1007/978-1-4684-8261-4_9.
Krkošek, M. et al. Fish farms, parasites, and predators: Implications for salmon population dynamics. Ecol. Appl.21, 897–914 (2011). 10.1890/09-1861.1 PubMed DOI
Dubansky, B., Whitaker, B. & Galvez, F. Influence of cortisol on the attachment and metamorphosis of larval Utterbackia imbecillis on bluegill sunfish (Lepomis macrochirus). Biol. Bull.220, 97–106 (2011). 10.1086/BBLv220n2p97 PubMed DOI
Reichard, M., Douda, K., Blažek, R. & Janovská, A. Increased plasma cortisol level as acute response to glochidia parasitism. Environ. Biol. Fishes106, 101–106 (2023).10.1007/s10641-022-01379-6 DOI
Douda, K., Vrtílek, M., Slavík, O. & Reichard, M. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biol. Invasions14, 127–137 (2012).10.1007/s10530-011-9989-7 DOI
Lajtner, J. & Crnčan, P. Distribution of the invasive bivalve sinanodonta woodiana (Lea, 1834) in Croatia. Aquat. Invasions6, 119–124 (2011).10.3391/ai.2011.6.S1.027 DOI
Donrovich, S. W. et al. Invasive Chinese pond mussel Sinanodonta woodiana threatens native mussel reproduction by inducing cross-resistance of host fish. Aquat. Conserv.27, 1325–1333 (2017).10.1002/aqc.2759 DOI
Carol, J., Zamora, L. & García-Berthou, E. Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain. Ecol. Freshw. Fish16, 450–456 (2007).10.1111/j.1600-0633.2007.00225.x DOI
Cucherousset, J. et al. Ecology, behaviour and management of the European catfish. Rev. Fish Biol. Fish28, 177–190 (2018).10.1007/s11160-017-9507-9 DOI
Guillerault, N. et al. Does the non-native European catfish Silurus glanis threaten French river fish populations?. Freshw. Biol.60, 922–928 (2015).10.1111/fwb.12545 DOI
Rasmussen, J. E. & Belk, M. C. Predation environment affects boldness temperament of neotropical livebearers. Ecol. Evol.7, 3059–3066 (2017). 10.1002/ece3.2886 PubMed DOI PMC
Wendelaar Bonga, S. E. The stress response in fish. Physiol. Rev.77, 591–625 (1997). 10.1152/physrev.1997.77.3.591 PubMed DOI
Slavík, O., Pešta, M. & Horký, P. Effect of grading on energy consumption in European catfish Silurus glanis. Aquaculture313, 73–78 (2011).10.1016/j.aquaculture.2011.01.002 DOI
Sales, E., Rogers, L., Freire, R., Luiz, O. & Kopf, R. K. Bold-shy personality traits of globally invasive, native and hatchery-reared fish. R. Soc. Open Sci.10.1098/rsos.231035 (2023). 10.1098/rsos.231035 PubMed DOI PMC
Slavík, O., Maciak, M. & Horký, P. Shelter use of familiar and unfamiliar groups of juvenile European catfish Silurus glanis. Appl. Anim. Behav. Sci.142, 116–123 (2012).10.1016/j.applanim.2012.09.005 DOI
Brodin, T., Fick, J., Jonsson, M. & Klaminder, J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science1979(339), 814–815 (2013).10.1126/science.1226850 PubMed DOI
Santos, M. E. S. et al. Traces of tramadol in water impact behaviour in a native European fish. Ecotoxicol. Environ. Saf.212, 111999 (2021). 10.1016/j.ecoenv.2021.111999 PubMed DOI
Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav.67, 773–782 (2000). 10.1016/S0091-3057(00)00422-6 PubMed DOI
Liang, K.-Y. & Zeger, S. L. Longitudinal data analysis using generalized linear models. Biometrika73, 13–22 (1986).10.1093/biomet/73.1.13 DOI
Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics53, 983 (1997). 10.2307/2533558 PubMed DOI