• This record comes from PubMed

The effect of parasitism on boldness and sheltering behaviour in albino and pigmented European catfish (Silurus glanis)

. 2024 Jul 30 ; 14 (1) : 17531. [epub] 20240730

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 39080432
PubMed Central PMC11289108
DOI 10.1038/s41598-024-67645-y
PII: 10.1038/s41598-024-67645-y
Knihovny.cz E-resources

Parasites can change the behaviour of their hosts, but little attention has been given to the relationship between parasite effects on host behaviour and colouration. The correlation between disrupted melanin production and alterations in various physiological and behavioural traits, e.g., aggression, shoaling behaviour, stress responsiveness and sensitivity to brood parasitism, has been reported in albino fish. We hypothesized that parasitism would affect the behaviour of albino and pigmented conspecifics differently. In laboratory conditions, we infested a group of pigmented and a group of albino individuals of European catfish Silurus glanis with glochidia of two Uninoidea species, namely, the native species Anodonta anatina and the invasive species Sinanodonta woodiana, and investigated the effect of parasitization on the boldness and sheltering behaviour of the hosts. The behaviour of albino individuals differed from that of pigmented conspecifics both before and after parasitization. Parasitization with glochidia did not affect sheltering behaviour, but it increased boldness in pigmented individuals, whereas albino individuals did not exhibit any changes in behaviour. Sheltering results were consistent in both binomial and continuous variable analyses, whereas boldness was significant only in the binomial analyses. Our results demonstrate the reduced susceptibility of the albino phenotype to glochidia infestation, together with questions of the choice of analyses.

See more in PubMed

Barber, I., Hoare, D. & Krause, J. Effects of parasites on fish behaviour: A review and evolutionary perspective. Rev. Fish Biol. Fish.10, 131–165 (2000).10.1023/A:1016658224470 DOI

Barber, I. & Dingemanse, N. J. Parasitism and the evolutionary ecology of animal personality. Philos. Trans. R. Soc. B Biol. Sci.365, 4077–4088 (2010).10.1098/rstb.2010.0182 PubMed DOI PMC

Poulin, R. Parasite Manipulation of Host Behavior: An Update and Frequently Asked Questions. Advances in the Study of Behavior Vol. 41 (Elsevier, 2010).

Barber, I., Mora, A. B., Payne, E. M., Weinersmith, K. L. & Sih, A. Parasitism, personality and cognition in fish. Behav. Process.141, 205–219 (2017).10.1016/j.beproc.2016.11.012 PubMed DOI

Ezenwa, V. O. et al. Host behaviour-parasite feedback: An essential link between animal behaviour and disease ecology. Proc. R. Soc. B Biol. Sci.283, 20153078 (2016).10.1098/rspb.2015.3078 PubMed DOI PMC

Gering, E. et al. Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host. Nat. Commun.10.1038/s41467-021-24092-x (2021). 10.1038/s41467-021-24092-x PubMed DOI PMC

Reisinger, L. S., Petersen, I., Hing, J. S., Davila, R. L. & Lodge, D. M. Infection with a trematode parasite differentially alters competitive interactions and antipredator behaviour in native and invasive crayfish. Freshw. Biol.60, 1581–1595 (2015).10.1111/fwb.12590 DOI

Kaldonski, N., Perrot-Minnot, M. J. & Cézilly, F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim. Behav.74, 1311–1317 (2007).10.1016/j.anbehav.2007.02.027 DOI

Médoc, V., Rigaud, T., Bollache, L. & Beisel, J. N. A manipulative parasite increasing an antipredator response decreases its vulnerability to a nonhost predator. Anim. Behav.77, 1235–1241 (2009).10.1016/j.anbehav.2009.01.029 DOI

Dijkstra, P. D. et al. The melanocortin system regulates body pigmentation and social behaviour in a colour polymorphic cichlid fish. Proc. R. Soc. B Biol. Sci.284, 20162838 (2017).10.1098/rspb.2016.2838 PubMed DOI PMC

Ducrest, A., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol.23, 502–510 (2008). 10.1016/j.tree.2008.06.001 PubMed DOI

Kittilsen, S. et al. Melanin-based skin spots reflect stress responsiveness in salmonid fish. Horm. Behav.56, 292–298 (2009). 10.1016/j.yhbeh.2009.06.006 PubMed DOI

Maan, M. E., Van Der Spoel, M., Jimenez, P. Q., Van Alphen, J. J. M. & Seehausen, O. Fitness correlates of male coloration in a Lake Victoria cichlid fish. Behav. Ecol.17, 691–699 (2006).10.1093/beheco/ark020 DOI

Kittilsen, S., Johansen, I. B., Braastad, B. O. & Øverli, Ø. Pigments, parasites and personalitiy: Towards a unifying role for steroid hormones?. PLoS One7, e34281 (2012). 10.1371/journal.pone.0034281 PubMed DOI PMC

Slavík, O., Horký, P. & Wackermannová, M. How does agonistic behaviour differ in albino and pigmented fish?. PeerJ4, e1937 (2016). 10.7717/peerj.1937 PubMed DOI PMC

Ren, J. Q., McCarthy, W. R., Zhang, H., Adolph, A. R. & Li, L. Behavioral visual responses of wild-type and hypopigmented zebrafish. Vis. Res.42, 293–299 (2002). 10.1016/S0042-6989(01)00284-X PubMed DOI

Slavík, O., Horký, P., Velíšek, J. & Valchářová, T. Pupil size variation as a response to stress in European catfish and its application for social stress detection in albino conspecifics. PLoS One15, e0244017 (2020). 10.1371/journal.pone.0244017 PubMed DOI PMC

Slavík, O., Horký, P., Valchářová, T., Pfauserová, N. & Velíšek, J. Comparative study of stress responses, laterality and familiarity recognition between albino and pigmented fish. Zoology150, 125982 (2022). 10.1016/j.zool.2021.125982 PubMed DOI

Cohen, M. S., Hawkins, M. B., Knox-Hayes, J., Vinton, A. C. & Cruz, A. A laboratory study of host use by the cuckoo catfish Synodontis multipunctatus. Environ. Biol. Fishes101, 1417–1425 (2018).10.1007/s10641-018-0788-1 DOI

Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. North Am. Benthol. Soc.27, 370–394 (2008).10.1899/07-093.1 DOI

Rock, S. L., Watz, J., Nilsson, P. A. & Österling, M. Effects of parasitic freshwater mussels on their host fishes: A review. Parasitology149, 1958–1975. 10.1017/S0031182022001226 (2022). 10.1017/S0031182022001226 PubMed DOI PMC

Horký, P., Douda, K., Maciak, M., Závorka, L. & Slavík, O. Parasite-induced alterations of host behaviour in a riverine fish: The effects of glochidia on host dispersal. Freshw. Biol.59, 1452–1461 (2014).10.1111/fwb.12357 DOI

Österling, E. M., Ferm, J. & Piccolo, J. J. Parasitic freshwater pearl mussel larvae (Margaritiferamargaritifera L.) reduce the drift-feeding rate of juvenile brown trout (Salmotrutta L.). Environ. Biol. Fishes97, 543–549 (2014).10.1007/s10641-014-0251-x DOI

Douda, K. et al. Direct impact of invasive bivalve (Sinanodonta woodiana) parasitism on freshwater fish physiology: Evidence and implications. Biol. Invasions19, 989–999 (2017).10.1007/s10530-016-1319-7 DOI

Slavík, O. et al. Parasite-induced increases in the energy costs of movement of host freshwater fish. Physiol. Behav.171, 127–134 (2017). 10.1016/j.physbeh.2017.01.010 PubMed DOI

Horký, P., Slavık, O. & Douda, K. Altered thermoregulation as a driver of host behaviour in glochidia-parasitised fish. J. Exp. Biol.10.1242/jeb.184903 (2019). 10.1242/jeb.184903 PubMed DOI

Filipsson, K. et al. Heavy loads of parasitic freshwater pearl mussel (Margaritiferamargaritifera L.) larvae impair foraging, activity and dominance performance in juvenile brown trout (Salmotrutta L.). Ecol. Freshw. Fish27, 70–77 (2018).10.1111/eff.12324 DOI

Kekäläinen, J., Pirhonen, J. & Taskinen, J. Do highly ornamented and less parasitized males have high quality sperm ?—An experimental test for parasite-induced reproductive trade-offs in European minnow (Phoxinus phoxinus). Ecol. Evol.4, 4237–4246 (2014). 10.1002/ece3.1267 PubMed DOI PMC

Dingerkus, G., Séret, B. & Guilbert, E. The first albinos wels, Silurus glanis Linnaeus, 1758, from France, with a review of albinism in catfishes (Teleostei: siluriformes). Cybium (Paris)15, 185–188 (1991).

Linhart, O. The culture of the European catfish, Silurus glanis, in the Czech Republic and in France. Aquat. Liv. Resour.15, 139–144 (2002).10.1016/S0990-7440(02)01153-1 DOI

Ellegren, H., Lindgren, G., Primmer, C. R. & Møller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature389, 593–596 (1997). 10.1038/39303 PubMed DOI

Ozerov, M. Y. et al. Differential expression and alternative splicing analyses of multiple tissues reveal albinism-associated genes in the Wels catfish (Silurus glanis). Comp. Biochem. Physiol. B Biochem. Mol. Biol.271, 110941 (2024). 10.1016/j.cbpb.2024.110941 PubMed DOI

Baxter, L. L., Watkins-Chow, D. E., Pavan, W. J. & Loftus, S. K. A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res.32, 348–358 (2019). 10.1111/pcmr.12743 PubMed DOI PMC

Simeonov, D. R. et al. DNA variations in oculocutaneous albinism: An updated mutation list and current outstanding issues in molecular diagnostics. Hum. Mutat.34, 827–835 (2013). 10.1002/humu.22315 PubMed DOI PMC

Urbańska, M., Kamocki, A., Kirschenstein, M. & Ożgo, M. The Chinese pond mussel Sinanodonta woodiana demographically outperforms European native mussels. Sci. Rep.11, 1–11 (2021). 10.1038/s41598-021-96568-1 PubMed DOI PMC

Crane, A. L., Fritts, A. K., Mathis, A., Lisek, J. C. & Barnhart, M. C. Do gill parasites influence the foraging and antipredator behaviour of rainbow darters, Etheostoma caeruleum?. Anim. Behav.82, 817–823 (2011).10.1016/j.anbehav.2011.07.015 DOI

Alfonso, S. et al. Coping styles in European sea bass: The link between boldness, stress response and neurogenesis. Physiol. Behav.207, 76–85 (2019). 10.1016/j.physbeh.2019.04.020 PubMed DOI

Huntingford, F. A. et al. Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. J. Fish Biol.76, 1576–1591 (2010). 10.1111/j.1095-8649.2010.02582.x PubMed DOI

Millot, S., Bégout, M. L. & Chatain, B. Risk-taking behaviour variation over time in sea bass Dicentrarchus labrax: Effects of day-night alternation, fish phenotypic characteristics and selection for growth. J. Fish Biol.75, 1733–1749 (2009). 10.1111/j.1095-8649.2009.02425.x PubMed DOI

Castanheira, M. F. et al. Coping styles in farmed fish: Consequences for aquaculture. Rev. Aquac.9, 23–41 (2017).10.1111/raq.12100 DOI

Elipot, Y., Hinaux, H., Callebert, J. & Rétaux, S. Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr. Biol.23, 1–10 (2013). 10.1016/j.cub.2012.10.044 PubMed DOI

Mafli, A., Wakamatsu, K. & Roulin, A. Melanin-based coloration predicts aggressiveness and boldness in captive eastern Hermann’s tortoises. Anim. Behav.81, 859–863 (2011).10.1016/j.anbehav.2011.01.025 DOI

Mateos-Gonzalez, F. & Senar, J. C. Melanin-based trait predicts individual exploratory behaviour in siskins, Carduelisspinus. Anim. Behav.83, 229–232 (2012).10.1016/j.anbehav.2011.10.030 DOI

Schweitzer, C., Motreuil, S. & Dechaume-Moncharmont, F. X. Coloration reflects behavioural types in the convict cichlid, Amatitlaniasiquia. Anim. Behav.105, 201–209 (2015).10.1016/j.anbehav.2015.04.024 DOI

Santostefano, F., Fanson, K. V., Endler, J. A. & Biro, P. A. Behavioral, energetic, and color trait integration in male guppies: Testing the melanocortin hypothesis. Behav. Ecol.30, 1539–1547 (2019).10.1093/beheco/arz109 DOI

Dupont, S., Baudry, E., Juette, P. & Gasparini, J. Eumelanic coloration and age interact to influence breath rate following a boldness test in urban pigeons. Glob. J. Ecol.5, 115–119 (2020).

Carlson, A., Bradley, E. & William, L. Trait Covariances in Eastern Box Turtles Do Not Support Pleiotropic Effects of the Melanocortin System on Color, Behavior, and Stress Physiology Published By: Society for the Study of Amphibians and Reptiles Trait Covariances in Eastern Box Turtles Do. 56, 478–488 (2023).

Bubac, C. M. et al. Genetic association with boldness and maternal performance in a free-ranging population of grey seals (Halichoerus grypus). Heredity (Edinb)127, 35–51 (2021). 10.1038/s41437-021-00439-4 PubMed DOI PMC

Dzieweczynski, T. L., Kane, J. L., Campbell, B. A. & Lavin, L. E. Fluoxetine exposure impacts boldness in female Siamese fighting fish, Bettasplendens. Ecotoxicology25, 69–79 (2016). 10.1007/s10646-015-1568-8 PubMed DOI

Bilandžija, H., Ma, L., Parkhurst, A. & Jeffery, W. R. A potential benefit of albinism in Astyanax cavefish: Downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One8, 1–14 (2013).10.1371/journal.pone.0080823 PubMed DOI PMC

O’Gorman, M. et al. Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Curr. Biol.31, 3694-3701.e4 (2021). 10.1016/j.cub.2021.06.077 PubMed DOI

Kehas, A. J., Theoharides, K. A. & Gilbert, J. J. Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin Tripneustes ventricosus. Mar. Biol.146, 1111–1117 (2005).10.1007/s00227-004-1514-4 DOI

Valchářová, T. et al. Stressful daylight: Differences in diel rhythmicity between albino and pigmented fish. Front. Ecol. Evol.10.3389/fevo.2022.890874 (2022).10.3389/fevo.2022.890874 DOI

van Abeelen, J. H. F. & Kroes, H. W. Albinism and mouse behaviour. Genetica38, 419–429 (1967).10.1007/BF01507473 PubMed DOI

Huntingford, F. A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol.65, 122–142 (2004).10.1111/j.0022-1112.2004.00562.x DOI

Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour142, 1207–1221 (2005).10.1163/156853905774539382 DOI

Glover, K. A., Taggart, J. B., Skaala, O. & Teale, A. J. A study of inadvertent domestication selection during start-feeding of brown trout families. J. Fish Biol.64, 1168–1178 (2004).10.1111/j.0022-1112.2004.00376.x DOI

Ibáñez, A., Pellitteri-Rosa, D., Sacchi, R., López, P. & Martín, J. Melanin-based coloration covaries with hiding and exploratory behavior in male Spanish terrapins. Ethology122, 30–36 (2016).10.1111/eth.12440 DOI

Chowdhury, M. M. R., Marjomäki, T. J. & Taskinen, J. Effect of glochidia infection on growth of fish: Freshwater pearl mussel Margaritifera margaritifera and brown trout Salmo trutta. Hydrobiologia848, 3179–3189 (2021).10.1007/s10750-019-03994-4 DOI

Filipsson, K. et al. Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta). Parasitol. Res.116, 1353–1360 (2017). 10.1007/s00436-017-5413-2 PubMed DOI PMC

Thomas, G. R., Taylor, J. & Garcia de Leaniz, C. Does the parasitic freshwater pearl mussel M.margaritifera harm its host?. Hydrobiologia735, 191–201 (2014).10.1007/s10750-013-1515-8 DOI

Milinski, M. Constraints placed by predators on feeding behaviour. In The Behaviour of Teleost Fishes (ed. Pitcher, T. J.) 236–252 (Springer, 1986). 10.1007/978-1-4684-8261-4_9.

Krkošek, M. et al. Fish farms, parasites, and predators: Implications for salmon population dynamics. Ecol. Appl.21, 897–914 (2011). 10.1890/09-1861.1 PubMed DOI

Dubansky, B., Whitaker, B. & Galvez, F. Influence of cortisol on the attachment and metamorphosis of larval Utterbackia imbecillis on bluegill sunfish (Lepomis macrochirus). Biol. Bull.220, 97–106 (2011). 10.1086/BBLv220n2p97 PubMed DOI

Reichard, M., Douda, K., Blažek, R. & Janovská, A. Increased plasma cortisol level as acute response to glochidia parasitism. Environ. Biol. Fishes106, 101–106 (2023).10.1007/s10641-022-01379-6 DOI

Douda, K., Vrtílek, M., Slavík, O. & Reichard, M. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biol. Invasions14, 127–137 (2012).10.1007/s10530-011-9989-7 DOI

Lajtner, J. & Crnčan, P. Distribution of the invasive bivalve sinanodonta woodiana (Lea, 1834) in Croatia. Aquat. Invasions6, 119–124 (2011).10.3391/ai.2011.6.S1.027 DOI

Donrovich, S. W. et al. Invasive Chinese pond mussel Sinanodonta woodiana threatens native mussel reproduction by inducing cross-resistance of host fish. Aquat. Conserv.27, 1325–1333 (2017).10.1002/aqc.2759 DOI

Carol, J., Zamora, L. & García-Berthou, E. Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain. Ecol. Freshw. Fish16, 450–456 (2007).10.1111/j.1600-0633.2007.00225.x DOI

Cucherousset, J. et al. Ecology, behaviour and management of the European catfish. Rev. Fish Biol. Fish28, 177–190 (2018).10.1007/s11160-017-9507-9 DOI

Guillerault, N. et al. Does the non-native European catfish Silurus glanis threaten French river fish populations?. Freshw. Biol.60, 922–928 (2015).10.1111/fwb.12545 DOI

Rasmussen, J. E. & Belk, M. C. Predation environment affects boldness temperament of neotropical livebearers. Ecol. Evol.7, 3059–3066 (2017). 10.1002/ece3.2886 PubMed DOI PMC

Wendelaar Bonga, S. E. The stress response in fish. Physiol. Rev.77, 591–625 (1997). 10.1152/physrev.1997.77.3.591 PubMed DOI

Slavík, O., Pešta, M. & Horký, P. Effect of grading on energy consumption in European catfish Silurus glanis. Aquaculture313, 73–78 (2011).10.1016/j.aquaculture.2011.01.002 DOI

Sales, E., Rogers, L., Freire, R., Luiz, O. & Kopf, R. K. Bold-shy personality traits of globally invasive, native and hatchery-reared fish. R. Soc. Open Sci.10.1098/rsos.231035 (2023). 10.1098/rsos.231035 PubMed DOI PMC

Slavík, O., Maciak, M. & Horký, P. Shelter use of familiar and unfamiliar groups of juvenile European catfish Silurus glanis. Appl. Anim. Behav. Sci.142, 116–123 (2012).10.1016/j.applanim.2012.09.005 DOI

Brodin, T., Fick, J., Jonsson, M. & Klaminder, J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science1979(339), 814–815 (2013).10.1126/science.1226850 PubMed DOI

Santos, M. E. S. et al. Traces of tramadol in water impact behaviour in a native European fish. Ecotoxicol. Environ. Saf.212, 111999 (2021). 10.1016/j.ecoenv.2021.111999 PubMed DOI

Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav.67, 773–782 (2000). 10.1016/S0091-3057(00)00422-6 PubMed DOI

Liang, K.-Y. & Zeger, S. L. Longitudinal data analysis using generalized linear models. Biometrika73, 13–22 (1986).10.1093/biomet/73.1.13 DOI

Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics53, 983 (1997). 10.2307/2533558 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...