Coupling between tolerance and resistance for two related Eimeria parasite species
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33391692
PubMed Central
PMC7771152
DOI
10.1002/ece3.6986
PII: ECE36986
Knihovny.cz E-zdroje
- Klíčová slova
- Eimeria, coevolution, resistance, tolerance,
- Publikační typ
- časopisecké články MeSH
Resistance (host capacity to reduce parasite burden) and tolerance (host capacity to reduce impact on its health for a given parasite burden) manifest two different lines of defense. Tolerance can be independent from resistance, traded off against it, or the two can be positively correlated because of redundancy in underlying (immune) processes. We here tested whether this coupling between tolerance and resistance could differ upon infection with closely related parasite species. We tested this in experimental infections with two parasite species of the genus Eimeria. We measured proxies for resistance (the (inverse of) number of parasite transmission stages (oocysts) per gram of feces at the day of maximal shedding) and tolerance (the slope of maximum relative weight loss compared to day of infection on number of oocysts per gram of feces at the day of maximal shedding for each host strain) in four inbred mouse strains and four groups of F1 hybrids belonging to two mouse subspecies, Mus musculus domesticus and Mus musculus musculus. We found a negative correlation between resistance and tolerance against Eimeria falciformis, while the two are uncoupled against Eimeria ferrisi. We conclude that resistance and tolerance against the first parasite species might be traded off, but evolve more independently in different mouse genotypes against the latter. We argue that evolution of the host immune defenses can be studied largely irrespective of parasite isolates if resistance-tolerance coupling is absent or weak (E. ferrisi) but host-parasite coevolution is more likely observable and best studied in a system with negatively correlated tolerance and resistance (E. falciformis).
Department of Molecular Parasitology Institute for Biology Humboldt University Berlin Berlin Germany
Leibniz Institut für Zoo und Wildtierforschung im Forschungsverbund Berlin e 5 Berlin Germany
Zobrazit více v PubMed
Al‐khlifeh, E. , Balard, A. , Jarquín‐Díaz, V. H. , Weyrich, A. , Wibbelt, G. , & Heitlinger, E. (2019). Eimeria falciformis BayerHaberkorn1970 and novel wild derived isolates from house mice: Differences in parasite lifecycle, pathogenicity and host immune reactions, bioRxiv, 611277 10.1101/611277 DOI
Ankrom, S. L. , Chobotar, B. , & Ernst, J. V. (1975). Life cycle of Eimeria ferrisi Levine & Ivens, 1965 in the mouse, Mus musculus . The Journal of Protozoology, 22, 317–323. 10.1111/j.1550-7408.1975.tb05177.x DOI
Ayres, J. S. , & Schneider, D. S. (2012). Tolerance of infections. Annual Review of Immunology, 30, 271–294. 10.1146/annurev-immunol-020711-075030 PubMed DOI
Baird, S. J. E. , & Goüy de Bellocq, J. (2019). Shifting paradigms for studying parasitism in hybridising hosts: Response to Theodosopoulos, Hund, and Taylor. Trends in Ecology & Evolution, 34, 387–389. 10.1016/j.tree.2019.01.011 PubMed DOI
Baird, S. J. E. , Ribas, A. , Macholán, M. , Albrecht, T. , Piálek, J. , & Goüy de Bellocq, J. (2012). Where are the wormy mice? A reexamination of hybrid parasitism in the European house mouse hybrid zone. Evolution, 66, 2757–2772. 10.1111/j.1558-5646.2012.01633.x PubMed DOI
Balard, A. , Jarquín‐Díaz, V. H. , Jost, J. , Martincová, I., Ďureje, Ľ. , Piálek, J. , Macholán, M. , de Bellocq, J. G. , Baird, S. J. E. , & Heitlinger, E. (2020). Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. Journal of Evolutionary Biology, 33, 435–448. 10.1111/jeb.13578 PubMed DOI
Baker, D. G. (1998). Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clinical Microbiology Reviews, 11(2), 231–266. PubMed PMC
Baucom, R. S. , & de Roode, J. C. (2011). Ecological immunology and tolerance in plants and animals. Functional Ecology, 25, 18–28. 10.1111/j.1365-2435.2010.01742.x DOI
Boots, M. , Best, A. , Miller, M. R. , & White, A. (2008). The role of ecological feedbacks in the evolution of host defence: What does theory tell us? Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 27–36. 10.1098/rstb.2008.0160 PubMed DOI PMC
Brett, M. T. (2004). When is a correlation between non‐independent variables “spurious”? Oikos, 105, 647–656. 10.1111/j.0030-1299.2004.12777.x DOI
Carval, D. , & Ferriere, R. (2010). A unified model for the coevolution of resistance, tolerance, and virulence. Evolution, 64, 2988–3009. 10.1111/j.1558-5646.2010.01035.x PubMed DOI
Chapman, H. D. , Barta, J. R. , Blake, D. , Gruber, A. , Jenkins, M. , Smith, N. C. , Suo, X. , & Tomley, F. M. (2013). Chapter two – A selective review of advances in coccidiosis research. Advances in Parasitology, 83, 93–171. 10.1016/B978-0-12-407705-8.00002-1 PubMed DOI
Clerc, M. , Fenton, A. , Babayan, S. A. , & Pedersen, A. B. (2019). Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology, 146, 1096–1106. 10.1017/S0031182019000192 PubMed DOI PMC
Delignette‐Muller, M. L. , & Dutang, C. (2015). Fitdistrplus: An r package for fitting distributions. Journal of Statistical Software, 64, 1–34. 10.18637/jss.v064.i04 DOI
Ďureje, Ľ. , Macholán, M. , Baird, S. J. E. , & Piálek, J. (2012). The mouse hybrid zone in Central Europe: From morphology to molecules. Journal of Vertebrate Biology, 61, 308–318. 10.25225/fozo.v61.i3.a13.2012 DOI
Ehret, T. , Spork, S. , Dieterich, C. , Lucius, R. , & Heitlinger, E. (2017). Dual RNA‐seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses. BMC Genomics, 18, 686 10.1186/s12864-017-4095-6 PubMed DOI PMC
Fineblum, W. L. , & Rausher, M. D. (1995). Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature, 377, 517–520. 10.1038/377517a0 DOI
Floyd, R. M. , Rogers, A. D. , Lambshead, P. J. D. , & Smith, C. R. (2005). Nematode‐specific PCR primers for the 18S small subunit rRNA gene. Molecular Ecology Notes, 5, 611–612. 10.1111/j.1471-8286.2005.01009.x DOI
Gandon, S. , & Michalakis, Y. (2000). Evolution of parasite virulence against qualitative or quantitative host resistance. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 985–990. 10.1098/rspb.2000.1100 PubMed DOI PMC
Graham, A. L. , Allen, J. E. , & Read, A. F. (2005). Evolutionary causes and consequences of immunopathology. Annual Review of Ecology, Evolution, and Systematics, 36, 373–397. 10.1146/annurev.ecolsys.36.102003.152622 DOI
Gregorová, S. , & Forejt, J. (2000). PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biologica, 46, 31–41. PubMed
Haberkorn, A. (1970). Die Entwicklung von Eimeria falciformis (Eimer 1870) in der weißen Maus (Mus musculus). Zeitschrift Für Parasitenkunde, 34, 49–67. 10.1007/BF00629179 DOI
Howick, V. M. , & Lazzaro, B. P. (2017). The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster . Molecular Ecology, 26, 1533–1546. 10.1111/mec.14017 PubMed DOI
Jackman, S. (2020). pscl: Classes and methods for R developed in the political science computational laboratory. United States Studies Centre, University of Sydney, Sydney, New South Wales, Australia; R package version 1.5.5, https://github.com/atahk/pscl/
Janzen, D. H. (1980). When is it coevolution? Evolution, 34, 611–612. 10.1111/j.1558-5646.1980.tb04849.x PubMed DOI
Jarquín‐Díaz, V. H. , Balard, A. , Jost, J. , Kraft, J. , Dikmen, M. N. , Kvičerová, J. , & Heitlinger, E. (2019). Detection and quantification of house mouse Eimeria at the species level – Challenges and solutions for the assessment of coccidia in wildlife. International Journal for Parasitology: Parasites and Wildlife, 10, 29–40. 10.1016/j.ijppaw.2019.07.004 PubMed DOI PMC
Klemme, I. , & Karvonen, A. (2016). Vertebrate defense against parasites: Interactions between avoidance, resistance, and tolerance. Ecology and Evolution, 7, 561–571. 10.1002/ece3.2645 PubMed DOI PMC
Kutzer, M. A. M. , & Armitage, S. A. O. (2016). Maximising fitness in the face of parasites: A review of host tolerance. Zoology, 119, 281–289. 10.1016/j.zool.2016.05.011 PubMed DOI
Lefèvre, T. , Williams, A. J. , & de Roode, J. C. (2010). Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly. Proceedings of the Royal Society B: Biological Sciences, 278, 751–759. 10.1098/rspb.2010.1479 PubMed DOI PMC
Lüdecke, D. (2018). Ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3, 772 10.21105/joss.00772 DOI
Macholán, M. , Baird, S. J. E. , Fornůsková, A. , & Martincová, I. , Rubík, P. , Ďureje, Ľ. , Heitlinger, E. , & Piálek, J. (2019). Widespread introgression of the Mus musculus musculus Y chromosome in Central Europe. bioRxiv. 10.1101/2019.12.23.887471 DOI
Mehlhorn, H. , Schmahl, G. , Frese, M. , Mevissen, I. , Harder, A. , & Krieger, K. (2005). Effects of a combinations of emodepside and praziquantel on parasites of reptiles and rodents. Parasitol Res, 97, S65–S69. 10.1007/s00436-005-1446-z PubMed DOI
Martincová, I. , Ďureje, Ľ. , Kreisinger, J. , Macholán, M. , & Piálek, J. (2019). Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecology and Evolution, 9, 6124–6137. 10.1002/ece3.5196 PubMed DOI PMC
Mazé‐Guilmo, E. , Loot, G. , Páez, D. J. , Lefèvre, T. , & Blanchet, S. (2014). Heritable variation in host tolerance and resistance inferred from a wild host–parasite system. Proceedings of the Royal Society B: Biological Sciences, 281, 20132567 10.1098/rspb.2013.2567 PubMed DOI PMC
Medzhitov, R. , Schneider, D. S. , & Soares, M. P. (2012). Disease tolerance as a defense strategy. Science, 335, 936–941. 10.1126/science.1214935 PubMed DOI PMC
Mesa, J. M. , Scholes, D. R. , Juvik, J. A. , & Paige, K. N. (2017). Molecular constraints on resistance–tolerance trade‐offs. Ecology, 98, 2528–2537. 10.1002/ecy.1948 PubMed DOI
Piálek, J. , Vyskočilová, M. , Bímová, B. , Havelková, D. , Piálková, J. , Dufková, P. , Bencová, V. , Ďureje, L. , Albrecht, T. , Hauffe, H. C. , Macholán, M. , Munclinger, P. , Storchová, R. , Zajícová, A. , Holáň, V. , Gregorová, S. , & Forejt, J. (2008). Development of unique house mouse resources suitable for evolutionary studies of speciation. Journal of Heredity, 99, 34–44. 10.1093/jhered/esm083 PubMed DOI
R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing; Retrieved from http://www.R‐project.org/
Råberg, L. , Graham, A. L. , & Read, A. F. (2009). Decomposing health: Tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 37–49. 10.1098/rstb.2008.0184 PubMed DOI PMC
Råberg, L. , Sim, D. , & Read, A. F. (2007). Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science, 318, 812–814. 10.1126/science.1148526 PubMed DOI
Restif, O. , & Koella, J. C. (2004). Concurrent evolution of resistance and tolerance to pathogens. The American Naturalist, 164, E90–E102. 10.1086/423713 PubMed DOI
Rose, M. E. , Hesketh, P. , & Wakelin, D. (1992). Immune control of murine coccidiosis: CD4+ and CD8+ T lymphocytes contribute differentially in resistance to primary and secondary infections. Parasitology, 105, 349–354. 10.1017/S0031182000074515 PubMed DOI
Roy, B. A. , & Kirchner, J. W. (2000). Evolutionary dynamics of pathogen resistance and tolerance. Evolution, 54, 51–63. 10.1111/j.0014-3820.2000.tb00007.x PubMed DOI
Schito, M. L. , Barta, J. R. , & Chobotar, B. (1996). Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. The Journal of Parasitology, 82, 255–262. 10.2307/3284157 PubMed DOI
Schmid‐Hempel, P. (2013). Evolutionary parasitology: The integrated study of infections, immunology, ecology, and genetics. Oxford University Press; 10.1093/acprof:oso/9780199229482.001.0001 DOI
Shaw, D. J. , & Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: A quantitative review. Parasitology, 111, S111–S133. 10.1017/S0031182000075855 PubMed DOI
Sheldon, B. C. , & Verhulst, S. (1996). Ecological immunology: Costly parasite defences and trade‐offs in evolutionary ecology. Trends in Ecology & Evolution, 11, 317–321. 10.1016/0169-5347(96)10039-2 PubMed DOI
Simms, E. L. (2000). Defining tolerance as a norm of reaction. Evolutionary Ecology, 14, 563–570. 10.1023/a:1010956716539 DOI
Smith, A. L. , & Hayday, A. C. (2000). Genetic Dissection of primary and secondary responses to a widespread natural pathogen of the gut, Eimeria vermiformis . Infection and Immunity, 68, 6273–6280. 10.1128/IAI.68.11.6273-6280.2000 PubMed DOI PMC
Soares, M. P. , Teixeira, L. , & Moita, L. F. (2017). Disease tolerance and immunity in host protection against infection. Nature Reviews Immunology, 17, 83–96. 10.1038/nri.2016.136 PubMed DOI
Stange, J. , Hepworth, M. R. , Rausch, S. , Zajic, L. , Kühl, A. A. , Uyttenhove, C. , Renauld, J.‐C. , Hartmann, S. , & Lucius, R. (2012). IL‐22 mediates host defense against an intestinal intracellular parasite in the absence of IFN‐γ at the cost of Th17‐driven immunopathology. Journal of Immunology, 188, 2410–2418. 10.4049/jimmunol.1102062 PubMed DOI
Stowe, K. , Marquis, R. , Hochwender, C. , & Simms, E. L. (2000). The evolutionary ecology of tolerance to consumer damage. Annual Review of Ecology, Evolution, and Systematics, 31, 565–595. 10.1146/annurev.ecolsys.31.1.565 DOI
Vale, P. F. , & Little, T. J. (2012). Fecundity compensation and tolerance to a sterilizing pathogen in Daphnia . Journal of Evolutionary Biology, 25, 1888–1896. 10.1111/j.1420-9101.2012.02579.x PubMed DOI PMC
Venables, W. N. , & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer; 10.1007/978-0-387-21706-2 DOI
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis (2nd ed.). Springer; 10.1007/978-0-387-98141-3 DOI
Woolhouse, M. E. J. , Webster, J. P. , Domingo, E. , Charlesworth, B. , & Levin, B. R. (2002). Biological and biomedical implications of the co‐evolution of pathogens and their hosts. Nature Genetics, 32, 569–577. 10.1038/ng1202-569 PubMed DOI
Zeileis, A. , Kleiber, C. , & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8). http://www.jstatsoft.org/v27/i08/