Coupling between tolerance and resistance for two related Eimeria parasite species

. 2020 Dec ; 10 (24) : 13938-13948. [epub] 20201112

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33391692

Resistance (host capacity to reduce parasite burden) and tolerance (host capacity to reduce impact on its health for a given parasite burden) manifest two different lines of defense. Tolerance can be independent from resistance, traded off against it, or the two can be positively correlated because of redundancy in underlying (immune) processes. We here tested whether this coupling between tolerance and resistance could differ upon infection with closely related parasite species. We tested this in experimental infections with two parasite species of the genus Eimeria. We measured proxies for resistance (the (inverse of) number of parasite transmission stages (oocysts) per gram of feces at the day of maximal shedding) and tolerance (the slope of maximum relative weight loss compared to day of infection on number of oocysts per gram of feces at the day of maximal shedding for each host strain) in four inbred mouse strains and four groups of F1 hybrids belonging to two mouse subspecies, Mus musculus domesticus and Mus musculus musculus. We found a negative correlation between resistance and tolerance against Eimeria falciformis, while the two are uncoupled against Eimeria ferrisi. We conclude that resistance and tolerance against the first parasite species might be traded off, but evolve more independently in different mouse genotypes against the latter. We argue that evolution of the host immune defenses can be studied largely irrespective of parasite isolates if resistance-tolerance coupling is absent or weak (E. ferrisi) but host-parasite coevolution is more likely observable and best studied in a system with negatively correlated tolerance and resistance (E. falciformis).

Zobrazit více v PubMed

Al‐khlifeh, E. , Balard, A. , Jarquín‐Díaz, V. H. , Weyrich, A. , Wibbelt, G. , & Heitlinger, E. (2019). Eimeria falciformis BayerHaberkorn1970 and novel wild derived isolates from house mice: Differences in parasite lifecycle, pathogenicity and host immune reactions, bioRxiv, 611277 10.1101/611277 DOI

Ankrom, S. L. , Chobotar, B. , & Ernst, J. V. (1975). Life cycle of Eimeria ferrisi Levine & Ivens, 1965 in the mouse, Mus musculus . The Journal of Protozoology, 22, 317–323. 10.1111/j.1550-7408.1975.tb05177.x DOI

Ayres, J. S. , & Schneider, D. S. (2012). Tolerance of infections. Annual Review of Immunology, 30, 271–294. 10.1146/annurev-immunol-020711-075030 PubMed DOI

Baird, S. J. E. , & Goüy de Bellocq, J. (2019). Shifting paradigms for studying parasitism in hybridising hosts: Response to Theodosopoulos, Hund, and Taylor. Trends in Ecology & Evolution, 34, 387–389. 10.1016/j.tree.2019.01.011 PubMed DOI

Baird, S. J. E. , Ribas, A. , Macholán, M. , Albrecht, T. , Piálek, J. , & Goüy de Bellocq, J. (2012). Where are the wormy mice? A reexamination of hybrid parasitism in the European house mouse hybrid zone. Evolution, 66, 2757–2772. 10.1111/j.1558-5646.2012.01633.x PubMed DOI

Balard, A. , Jarquín‐Díaz, V. H. , Jost, J. , Martincová, I., Ďureje, Ľ. , Piálek, J. , Macholán, M. , de Bellocq, J. G. , Baird, S. J. E. , & Heitlinger, E. (2020). Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. Journal of Evolutionary Biology, 33, 435–448. 10.1111/jeb.13578 PubMed DOI

Baker, D. G. (1998). Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clinical Microbiology Reviews, 11(2), 231–266. PubMed PMC

Baucom, R. S. , & de Roode, J. C. (2011). Ecological immunology and tolerance in plants and animals. Functional Ecology, 25, 18–28. 10.1111/j.1365-2435.2010.01742.x DOI

Boots, M. , Best, A. , Miller, M. R. , & White, A. (2008). The role of ecological feedbacks in the evolution of host defence: What does theory tell us? Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 27–36. 10.1098/rstb.2008.0160 PubMed DOI PMC

Brett, M. T. (2004). When is a correlation between non‐independent variables “spurious”? Oikos, 105, 647–656. 10.1111/j.0030-1299.2004.12777.x DOI

Carval, D. , & Ferriere, R. (2010). A unified model for the coevolution of resistance, tolerance, and virulence. Evolution, 64, 2988–3009. 10.1111/j.1558-5646.2010.01035.x PubMed DOI

Chapman, H. D. , Barta, J. R. , Blake, D. , Gruber, A. , Jenkins, M. , Smith, N. C. , Suo, X. , & Tomley, F. M. (2013). Chapter two – A selective review of advances in coccidiosis research. Advances in Parasitology, 83, 93–171. 10.1016/B978-0-12-407705-8.00002-1 PubMed DOI

Clerc, M. , Fenton, A. , Babayan, S. A. , & Pedersen, A. B. (2019). Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology, 146, 1096–1106. 10.1017/S0031182019000192 PubMed DOI PMC

Delignette‐Muller, M. L. , & Dutang, C. (2015). Fitdistrplus: An r package for fitting distributions. Journal of Statistical Software, 64, 1–34. 10.18637/jss.v064.i04 DOI

Ďureje, Ľ. , Macholán, M. , Baird, S. J. E. , & Piálek, J. (2012). The mouse hybrid zone in Central Europe: From morphology to molecules. Journal of Vertebrate Biology, 61, 308–318. 10.25225/fozo.v61.i3.a13.2012 DOI

Ehret, T. , Spork, S. , Dieterich, C. , Lucius, R. , & Heitlinger, E. (2017). Dual RNA‐seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses. BMC Genomics, 18, 686 10.1186/s12864-017-4095-6 PubMed DOI PMC

Fineblum, W. L. , & Rausher, M. D. (1995). Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature, 377, 517–520. 10.1038/377517a0 DOI

Floyd, R. M. , Rogers, A. D. , Lambshead, P. J. D. , & Smith, C. R. (2005). Nematode‐specific PCR primers for the 18S small subunit rRNA gene. Molecular Ecology Notes, 5, 611–612. 10.1111/j.1471-8286.2005.01009.x DOI

Gandon, S. , & Michalakis, Y. (2000). Evolution of parasite virulence against qualitative or quantitative host resistance. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 985–990. 10.1098/rspb.2000.1100 PubMed DOI PMC

Graham, A. L. , Allen, J. E. , & Read, A. F. (2005). Evolutionary causes and consequences of immunopathology. Annual Review of Ecology, Evolution, and Systematics, 36, 373–397. 10.1146/annurev.ecolsys.36.102003.152622 DOI

Gregorová, S. , & Forejt, J. (2000). PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biologica, 46, 31–41. PubMed

Haberkorn, A. (1970). Die Entwicklung von Eimeria falciformis (Eimer 1870) in der weißen Maus (Mus musculus). Zeitschrift Für Parasitenkunde, 34, 49–67. 10.1007/BF00629179 DOI

Howick, V. M. , & Lazzaro, B. P. (2017). The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster . Molecular Ecology, 26, 1533–1546. 10.1111/mec.14017 PubMed DOI

Jackman, S. (2020). pscl: Classes and methods for R developed in the political science computational laboratory. United States Studies Centre, University of Sydney, Sydney, New South Wales, Australia; R package version 1.5.5, https://github.com/atahk/pscl/

Janzen, D. H. (1980). When is it coevolution? Evolution, 34, 611–612. 10.1111/j.1558-5646.1980.tb04849.x PubMed DOI

Jarquín‐Díaz, V. H. , Balard, A. , Jost, J. , Kraft, J. , Dikmen, M. N. , Kvičerová, J. , & Heitlinger, E. (2019). Detection and quantification of house mouse Eimeria at the species level – Challenges and solutions for the assessment of coccidia in wildlife. International Journal for Parasitology: Parasites and Wildlife, 10, 29–40. 10.1016/j.ijppaw.2019.07.004 PubMed DOI PMC

Klemme, I. , & Karvonen, A. (2016). Vertebrate defense against parasites: Interactions between avoidance, resistance, and tolerance. Ecology and Evolution, 7, 561–571. 10.1002/ece3.2645 PubMed DOI PMC

Kutzer, M. A. M. , & Armitage, S. A. O. (2016). Maximising fitness in the face of parasites: A review of host tolerance. Zoology, 119, 281–289. 10.1016/j.zool.2016.05.011 PubMed DOI

Lefèvre, T. , Williams, A. J. , & de Roode, J. C. (2010). Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly. Proceedings of the Royal Society B: Biological Sciences, 278, 751–759. 10.1098/rspb.2010.1479 PubMed DOI PMC

Lüdecke, D. (2018). Ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3, 772 10.21105/joss.00772 DOI

Macholán, M. , Baird, S. J. E. , Fornůsková, A. , & Martincová, I. , Rubík, P. , Ďureje, Ľ. , Heitlinger, E. , & Piálek, J. (2019). Widespread introgression of the Mus musculus musculus Y chromosome in Central Europe. bioRxiv. 10.1101/2019.12.23.887471 DOI

Mehlhorn, H. , Schmahl, G. , Frese, M. , Mevissen, I. , Harder, A. , & Krieger, K. (2005). Effects of a combinations of emodepside and praziquantel on parasites of reptiles and rodents. Parasitol Res, 97, S65–S69. 10.1007/s00436-005-1446-z PubMed DOI

Martincová, I. , Ďureje, Ľ. , Kreisinger, J. , Macholán, M. , & Piálek, J. (2019). Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecology and Evolution, 9, 6124–6137. 10.1002/ece3.5196 PubMed DOI PMC

Mazé‐Guilmo, E. , Loot, G. , Páez, D. J. , Lefèvre, T. , & Blanchet, S. (2014). Heritable variation in host tolerance and resistance inferred from a wild host–parasite system. Proceedings of the Royal Society B: Biological Sciences, 281, 20132567 10.1098/rspb.2013.2567 PubMed DOI PMC

Medzhitov, R. , Schneider, D. S. , & Soares, M. P. (2012). Disease tolerance as a defense strategy. Science, 335, 936–941. 10.1126/science.1214935 PubMed DOI PMC

Mesa, J. M. , Scholes, D. R. , Juvik, J. A. , & Paige, K. N. (2017). Molecular constraints on resistance–tolerance trade‐offs. Ecology, 98, 2528–2537. 10.1002/ecy.1948 PubMed DOI

Piálek, J. , Vyskočilová, M. , Bímová, B. , Havelková, D. , Piálková, J. , Dufková, P. , Bencová, V. , Ďureje, L. , Albrecht, T. , Hauffe, H. C. , Macholán, M. , Munclinger, P. , Storchová, R. , Zajícová, A. , Holáň, V. , Gregorová, S. , & Forejt, J. (2008). Development of unique house mouse resources suitable for evolutionary studies of speciation. Journal of Heredity, 99, 34–44. 10.1093/jhered/esm083 PubMed DOI

R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing; Retrieved from http://www.R‐project.org/

Råberg, L. , Graham, A. L. , & Read, A. F. (2009). Decomposing health: Tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 37–49. 10.1098/rstb.2008.0184 PubMed DOI PMC

Råberg, L. , Sim, D. , & Read, A. F. (2007). Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science, 318, 812–814. 10.1126/science.1148526 PubMed DOI

Restif, O. , & Koella, J. C. (2004). Concurrent evolution of resistance and tolerance to pathogens. The American Naturalist, 164, E90–E102. 10.1086/423713 PubMed DOI

Rose, M. E. , Hesketh, P. , & Wakelin, D. (1992). Immune control of murine coccidiosis: CD4+ and CD8+ T lymphocytes contribute differentially in resistance to primary and secondary infections. Parasitology, 105, 349–354. 10.1017/S0031182000074515 PubMed DOI

Roy, B. A. , & Kirchner, J. W. (2000). Evolutionary dynamics of pathogen resistance and tolerance. Evolution, 54, 51–63. 10.1111/j.0014-3820.2000.tb00007.x PubMed DOI

Schito, M. L. , Barta, J. R. , & Chobotar, B. (1996). Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. The Journal of Parasitology, 82, 255–262. 10.2307/3284157 PubMed DOI

Schmid‐Hempel, P. (2013). Evolutionary parasitology: The integrated study of infections, immunology, ecology, and genetics. Oxford University Press; 10.1093/acprof:oso/9780199229482.001.0001 DOI

Shaw, D. J. , & Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: A quantitative review. Parasitology, 111, S111–S133. 10.1017/S0031182000075855 PubMed DOI

Sheldon, B. C. , & Verhulst, S. (1996). Ecological immunology: Costly parasite defences and trade‐offs in evolutionary ecology. Trends in Ecology & Evolution, 11, 317–321. 10.1016/0169-5347(96)10039-2 PubMed DOI

Simms, E. L. (2000). Defining tolerance as a norm of reaction. Evolutionary Ecology, 14, 563–570. 10.1023/a:1010956716539 DOI

Smith, A. L. , & Hayday, A. C. (2000). Genetic Dissection of primary and secondary responses to a widespread natural pathogen of the gut, Eimeria vermiformis . Infection and Immunity, 68, 6273–6280. 10.1128/IAI.68.11.6273-6280.2000 PubMed DOI PMC

Soares, M. P. , Teixeira, L. , & Moita, L. F. (2017). Disease tolerance and immunity in host protection against infection. Nature Reviews Immunology, 17, 83–96. 10.1038/nri.2016.136 PubMed DOI

Stange, J. , Hepworth, M. R. , Rausch, S. , Zajic, L. , Kühl, A. A. , Uyttenhove, C. , Renauld, J.‐C. , Hartmann, S. , & Lucius, R. (2012). IL‐22 mediates host defense against an intestinal intracellular parasite in the absence of IFN‐γ at the cost of Th17‐driven immunopathology. Journal of Immunology, 188, 2410–2418. 10.4049/jimmunol.1102062 PubMed DOI

Stowe, K. , Marquis, R. , Hochwender, C. , & Simms, E. L. (2000). The evolutionary ecology of tolerance to consumer damage. Annual Review of Ecology, Evolution, and Systematics, 31, 565–595. 10.1146/annurev.ecolsys.31.1.565 DOI

Vale, P. F. , & Little, T. J. (2012). Fecundity compensation and tolerance to a sterilizing pathogen in Daphnia . Journal of Evolutionary Biology, 25, 1888–1896. 10.1111/j.1420-9101.2012.02579.x PubMed DOI PMC

Venables, W. N. , & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer; 10.1007/978-0-387-21706-2 DOI

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis (2nd ed.). Springer; 10.1007/978-0-387-98141-3 DOI

Woolhouse, M. E. J. , Webster, J. P. , Domingo, E. , Charlesworth, B. , & Levin, B. R. (2002). Biological and biomedical implications of the co‐evolution of pathogens and their hosts. Nature Genetics, 32, 569–577. 10.1038/ng1202-569 PubMed DOI

Zeileis, A. , Kleiber, C. , & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8). http://www.jstatsoft.org/v27/i08/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...