Vision before and after scharioth macular lens implantation in patients with AMD: an electrophysiological study

. 2021 Aug ; 143 (1) : 17-31. [epub] 20210103

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33392893
Odkazy

PubMed 33392893
PubMed Central PMC8266777
DOI 10.1007/s10633-020-09814-8
PII: 10.1007/s10633-020-09814-8
Knihovny.cz E-zdroje

BACKGROUND: For patients with age-related macular degeneration (AMD), a special intraocular lens implantation partially compensates for the loss in the central part of the visual field. For six months, we evaluated changes in neurophysiological parameters in patients implanted with a "Scharioth macula lens" (SML; a center near high add + 10 D and peripheral plano carrier bifocal lens designed to be located between the iris and an artificial lens). METHODS: Fourteen patients (5 M, 9 F, 63-87 years) with dry AMD were examined prior to and at 3 days after, as well as 1, 2, and 6 months after, implantation using pattern-reversal, motion-onset, and cognitive evoked potentials, psychophysical tests evaluating distant and near visual acuity, and contrast sensitivity. RESULTS: Near visual acuity without an external aid was significantly better six months after implantation than before implantation (Jaeger table median (lower; upper quartile): 4 (1; 6) vs. 15 (13; 17)). Distant visual acuity was significantly altered between the pre- (0.7 (0.5; 0.8) logMAR) and last postimplantation visits (0.8 (0.7; 0.8) logMAR), which matched prolongation of the P100 peak time (147 (135; 151) ms vs. 161 (141; 166) ms) of 15 arc min pattern-reversal VEPs and N2 peak time (191.5 (186.5; 214.5) ms vs. 205 (187; 218) ms) of peripheral motion-onset VEPs. CONCLUSION: SML implantation significantly improved near vision. We also observed a slight but significant decrease in distant and peripheral vision. The most efficient electrophysiological approach to test patients with SML was the peripheral motion-onset stimulation, which evoked repeatable and readable VEPs.

Zobrazit více v PubMed

Yuzawa M, Fujita K, Tanaka E, Wang ECY. Assessing quality of life in the treatment of patients with age-related macular degeneration: clinical research findings and recommendations for clinical practice. Clin Ophthalmol. 2013;7:1325–1332. doi: 10.2147/OPTH.S45248. PubMed DOI PMC

Taylor HR, McCarty CA, Nanjan MB. Vision impairment predicts five-year mortality. Trans Am Ophthalmol Soc. 2000;98:91–96. PubMed PMC

Bourne RRA, Jonas JB, Flaxman SR, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010. Br J Ophthalmol. 2014;98:629–638. doi: 10.1136/bjophthalmol-2013-304033. PubMed DOI

SingerAmirHerro MaNA, et al. Improving quality of life in patients with end-stage age-related macular degeneration: focus on miniature ocular implants. Clin Ophthalmol. 2012;6:33–39. doi: 10.2147/OPTH.S15028. PubMed DOI PMC

Hau VS, London N, Dalton M. The treatment paradigm for the implantable miniature telescope. Ophthalmol Ther. 2016;5:21–30. doi: 10.1007/s40123-016-0047-5. PubMed DOI PMC

Gupta A, Lam J, Custis P, et al. Implantable miniature telescope (IMT) for vision loss due to end-stage age-related macular degeneration. In: Gupta A, et al., editors. Cochrane Database of Systematic Reviews. UK: Wiley; 2014. PubMed PMC

Agarwal A, Lipshitz I, Jacob S, et al. Mirror telescopic intraocular lens for age-related macular degeneration: design and preliminary clinical results of the Lipshitz macular implant. J Cataract Refract Surg. 2008;34:87–94. doi: 10.1016/j.jcrs.2007.08.031. PubMed DOI

Lipshitz I, Lipshitz Y (2009) Intra-Ocular Implant. 2. https://patents.google.com/patent/CN104203155A/en

Kremláček J, Jirásková N, Nekolová J, et al. Electrophysiological testing of visual function after mirror telescope implantation: a case report. Doc Ophthalmol. 2016;133:171–181. doi: 10.1007/s10633-016-9563-9. PubMed DOI

Scharioth GB. New add-on intraocular lens for patients with age-related macular degeneration. J Cataract Refract Surg. 2015;41:1559–1563. doi: 10.1016/j.jcrs.2015.07.018. PubMed DOI

Nekolová J, Kremláček J, Kuba M, et al. Methods of improving the visual functions in patients with stable maculopathy-pilot results of a new study. Czech Slovak Ophthalmol. 2019;75:130–135. doi: 10.31348/2019/3/3. PubMed DOI

Nekolova J, Rozsival P, Sin M, Jiraskova N. Scharioth macula lens: a new intraocular implant for low-vision patients with stabilized maculopathy-first experience. Biomed Pap. 2017 doi: 10.5507/bp.2017.014. PubMed DOI

Srinivasan S, Riehl A, Tanev IV, et al. Implantation of Scharioth macula lens in patients with age-related macular degeneration: results of a prospective European multicentre clinical trial. BMJ Open Ophthalmol. 2019;4:000322. doi: 10.1136/bmjophth-2019-000322corr1. PubMed DOI PMC

Odom JV, Bach M, Brigell M, et al. ISCEV standard for clinical visual evoked potentials: (2016 update) Doc Ophthalmol. 2016;133:1–9. doi: 10.1007/s10633-016-9553-y. PubMed DOI

Kuba M, Kubova Z, Kremlacek J, Langrova J. Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res. 2007;47:189–202. doi: 10.1016/j.visres.2006.09.020. PubMed DOI

Heinrich SP. A primer on motion visual evoked potentials. Doc Ophthalmol. 2007;114:83–105. doi: 10.1007/s10633-006-9043-8. PubMed DOI

Polich J. Cognitive Brain Potentials. Curr Dir Psychol Sci. 1993;2:175–179. doi: 10.1111/1467-8721.ep10769728. DOI

Sokol S, Moskowitz A. Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res. 1981;21:1279–1286. doi: 10.1016/0042-6989(81)90232-7. PubMed DOI

Kremláček J, Kuba M, Chlubnová J, Kubová Z. Effect of stimulus localisation on motion-onset VEP. Vision Res. 2004;44:2989–3000. doi: 10.1016/j.visres.2004.07.002. PubMed DOI

Bailey IL, Lovie-Kitchin JE. Visual acuity testing from the laboratory to the clinic. Vision Res. 2013;90:2–9. doi: 10.1016/j.visres.2013.05.004. PubMed DOI

Rubin GS. Measuring reading performance. Vision Res. 2013;90:43–51. doi: 10.1016/j.visres.2013.02.015. PubMed DOI

Bach M. The freiburg visual acuity test-variability unchanged by post-hoc re-analysis. Graefes Arch Clin Exp Ophthalmol. 2007;245:965–971. doi: 10.1007/s00417-006-0474-4. PubMed DOI

Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10:433–436. doi: 10.1163/156856897X00357. PubMed DOI

Kremlácek J, Kuba M. Global brain dynamics of transient visual evoked potentials. Physiol Res. 1999;48:303–308. PubMed

Kremláček J, Kuba M, Kubova Z, Chlubnova J. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol. 2004;109:169–175. doi: 10.1007/s10633-004-4048-7. PubMed DOI

R Development Core Team (2020) R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. 3503

Bereczki Á. Experiences with the Scharioth Macula Lens– new hope for patients with dry macular degeneration. Rom J Ophthalmol. 2019;63:128–134. doi: 10.22336/rjo.2019.19. PubMed DOI PMC

Chantarasorn Y, Kim EL, Thabsuwan K. Macular add-on intraocular lens successfully restores reading vision in eyes with end-stage diabetic macular disease. Retin Cases Brief Rep Publish Ah: 2019 doi: 10.1097/ICB.0000000000000885. PubMed DOI

Bass S, Sherman J, Bodis-Wollner I, Nath S. Visual evoked potentials in macular disease. Ophthalmol Vis. 1985;16:1071–1074. PubMed

Moschos MM, Nitoda E. The Role of mf-ERG in the diagnosis and treatment of age-related macular degeneration: electrophysiological features of AMD. Semin Ophthalmol. 2018;33:461–469. doi: 10.1080/08820538.2017.1301496. PubMed DOI

Niermann F, Lorenz R, Heider W. Pattern electroretinography and pattern visual evoked potentials in maculopathy: a comparison with sensory tests. Fortschr Ophthalmol. 1989;86:54–58. PubMed

Perlman I, Segev E, Mazawi N, et al. Visual evoked cortical potential can be used to differentiate between uncorrected refractive error and macular disorders. Doc Ophthalmol. 2001;102:41–62. doi: 10.1023/a:1017539308389. PubMed DOI

Meredith JT, Celesia GG. Pattern-reversal visual evoked potentials and retinal eccentricity. Electroencephalogr Clin Neurophysiol. 1982;53:243–253. doi: 10.1016/0013-4694(82)90082-7. PubMed DOI

Langrová J, Kuba M, Kremláček J, et al. Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vision Res. 2006;46:536–544. doi: 10.1016/j.visres.2005.06.024. PubMed DOI

Kubova Z, Kuba M, Juran J, Blakemore C. Is the motion system relatively spared in amblyopia? evidence from cortical evoked responses. Vis Res. 1996;36:181–190. doi: 10.1016/0042-6989(95)00055-5. PubMed DOI

Zeri F, Berchicci M, Naroo SA, et al. Immediate cortical adaptation in visual and non-visual areas functions induced by monovision. J Physiol. 2018;596:253–266. doi: 10.1113/JP274896. PubMed DOI PMC

Kuba M, Kremláček J, Langrova J, et al. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res. 2012;62:9–16. doi: 10.1016/j.visres.2012.03.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace