Vision before and after scharioth macular lens implantation in patients with AMD: an electrophysiological study
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33392893
PubMed Central
PMC8266777
DOI
10.1007/s10633-020-09814-8
PII: 10.1007/s10633-020-09814-8
Knihovny.cz E-resources
- Keywords
- Age-related macular degeneration, Maculopathy, Motion-onset VEPs, Oddball ERPs, P3b, Pattern-reversal VEPs, Scharioth macular lens,
- MeSH
- Electroretinography MeSH
- Lens Implantation, Intraocular MeSH
- Humans MeSH
- Macular Degeneration * MeSH
- Lenses, Intraocular * MeSH
- Visual Acuity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: For patients with age-related macular degeneration (AMD), a special intraocular lens implantation partially compensates for the loss in the central part of the visual field. For six months, we evaluated changes in neurophysiological parameters in patients implanted with a "Scharioth macula lens" (SML; a center near high add + 10 D and peripheral plano carrier bifocal lens designed to be located between the iris and an artificial lens). METHODS: Fourteen patients (5 M, 9 F, 63-87 years) with dry AMD were examined prior to and at 3 days after, as well as 1, 2, and 6 months after, implantation using pattern-reversal, motion-onset, and cognitive evoked potentials, psychophysical tests evaluating distant and near visual acuity, and contrast sensitivity. RESULTS: Near visual acuity without an external aid was significantly better six months after implantation than before implantation (Jaeger table median (lower; upper quartile): 4 (1; 6) vs. 15 (13; 17)). Distant visual acuity was significantly altered between the pre- (0.7 (0.5; 0.8) logMAR) and last postimplantation visits (0.8 (0.7; 0.8) logMAR), which matched prolongation of the P100 peak time (147 (135; 151) ms vs. 161 (141; 166) ms) of 15 arc min pattern-reversal VEPs and N2 peak time (191.5 (186.5; 214.5) ms vs. 205 (187; 218) ms) of peripheral motion-onset VEPs. CONCLUSION: SML implantation significantly improved near vision. We also observed a slight but significant decrease in distant and peripheral vision. The most efficient electrophysiological approach to test patients with SML was the peripheral motion-onset stimulation, which evoked repeatable and readable VEPs.
See more in PubMed
Yuzawa M, Fujita K, Tanaka E, Wang ECY. Assessing quality of life in the treatment of patients with age-related macular degeneration: clinical research findings and recommendations for clinical practice. Clin Ophthalmol. 2013;7:1325–1332. doi: 10.2147/OPTH.S45248. PubMed DOI PMC
Taylor HR, McCarty CA, Nanjan MB. Vision impairment predicts five-year mortality. Trans Am Ophthalmol Soc. 2000;98:91–96. PubMed PMC
Bourne RRA, Jonas JB, Flaxman SR, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010. Br J Ophthalmol. 2014;98:629–638. doi: 10.1136/bjophthalmol-2013-304033. PubMed DOI
SingerAmirHerro MaNA, et al. Improving quality of life in patients with end-stage age-related macular degeneration: focus on miniature ocular implants. Clin Ophthalmol. 2012;6:33–39. doi: 10.2147/OPTH.S15028. PubMed DOI PMC
Hau VS, London N, Dalton M. The treatment paradigm for the implantable miniature telescope. Ophthalmol Ther. 2016;5:21–30. doi: 10.1007/s40123-016-0047-5. PubMed DOI PMC
Gupta A, Lam J, Custis P, et al. Implantable miniature telescope (IMT) for vision loss due to end-stage age-related macular degeneration. In: Gupta A, et al., editors. Cochrane Database of Systematic Reviews. UK: Wiley; 2014. PubMed PMC
Agarwal A, Lipshitz I, Jacob S, et al. Mirror telescopic intraocular lens for age-related macular degeneration: design and preliminary clinical results of the Lipshitz macular implant. J Cataract Refract Surg. 2008;34:87–94. doi: 10.1016/j.jcrs.2007.08.031. PubMed DOI
Lipshitz I, Lipshitz Y (2009) Intra-Ocular Implant. 2. https://patents.google.com/patent/CN104203155A/en
Kremláček J, Jirásková N, Nekolová J, et al. Electrophysiological testing of visual function after mirror telescope implantation: a case report. Doc Ophthalmol. 2016;133:171–181. doi: 10.1007/s10633-016-9563-9. PubMed DOI
Scharioth GB. New add-on intraocular lens for patients with age-related macular degeneration. J Cataract Refract Surg. 2015;41:1559–1563. doi: 10.1016/j.jcrs.2015.07.018. PubMed DOI
Nekolová J, Kremláček J, Kuba M, et al. Methods of improving the visual functions in patients with stable maculopathy-pilot results of a new study. Czech Slovak Ophthalmol. 2019;75:130–135. doi: 10.31348/2019/3/3. PubMed DOI
Nekolova J, Rozsival P, Sin M, Jiraskova N. Scharioth macula lens: a new intraocular implant for low-vision patients with stabilized maculopathy-first experience. Biomed Pap. 2017 doi: 10.5507/bp.2017.014. PubMed DOI
Srinivasan S, Riehl A, Tanev IV, et al. Implantation of Scharioth macula lens in patients with age-related macular degeneration: results of a prospective European multicentre clinical trial. BMJ Open Ophthalmol. 2019;4:000322. doi: 10.1136/bmjophth-2019-000322corr1. PubMed DOI PMC
Odom JV, Bach M, Brigell M, et al. ISCEV standard for clinical visual evoked potentials: (2016 update) Doc Ophthalmol. 2016;133:1–9. doi: 10.1007/s10633-016-9553-y. PubMed DOI
Kuba M, Kubova Z, Kremlacek J, Langrova J. Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res. 2007;47:189–202. doi: 10.1016/j.visres.2006.09.020. PubMed DOI
Heinrich SP. A primer on motion visual evoked potentials. Doc Ophthalmol. 2007;114:83–105. doi: 10.1007/s10633-006-9043-8. PubMed DOI
Polich J. Cognitive Brain Potentials. Curr Dir Psychol Sci. 1993;2:175–179. doi: 10.1111/1467-8721.ep10769728. DOI
Sokol S, Moskowitz A. Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res. 1981;21:1279–1286. doi: 10.1016/0042-6989(81)90232-7. PubMed DOI
Kremláček J, Kuba M, Chlubnová J, Kubová Z. Effect of stimulus localisation on motion-onset VEP. Vision Res. 2004;44:2989–3000. doi: 10.1016/j.visres.2004.07.002. PubMed DOI
Bailey IL, Lovie-Kitchin JE. Visual acuity testing from the laboratory to the clinic. Vision Res. 2013;90:2–9. doi: 10.1016/j.visres.2013.05.004. PubMed DOI
Rubin GS. Measuring reading performance. Vision Res. 2013;90:43–51. doi: 10.1016/j.visres.2013.02.015. PubMed DOI
Bach M. The freiburg visual acuity test-variability unchanged by post-hoc re-analysis. Graefes Arch Clin Exp Ophthalmol. 2007;245:965–971. doi: 10.1007/s00417-006-0474-4. PubMed DOI
Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10:433–436. doi: 10.1163/156856897X00357. PubMed DOI
Kremlácek J, Kuba M. Global brain dynamics of transient visual evoked potentials. Physiol Res. 1999;48:303–308. PubMed
Kremláček J, Kuba M, Kubova Z, Chlubnova J. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol. 2004;109:169–175. doi: 10.1007/s10633-004-4048-7. PubMed DOI
R Development Core Team (2020) R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. 3503
Bereczki Á. Experiences with the Scharioth Macula Lens– new hope for patients with dry macular degeneration. Rom J Ophthalmol. 2019;63:128–134. doi: 10.22336/rjo.2019.19. PubMed DOI PMC
Chantarasorn Y, Kim EL, Thabsuwan K. Macular add-on intraocular lens successfully restores reading vision in eyes with end-stage diabetic macular disease. Retin Cases Brief Rep Publish Ah: 2019 doi: 10.1097/ICB.0000000000000885. PubMed DOI
Bass S, Sherman J, Bodis-Wollner I, Nath S. Visual evoked potentials in macular disease. Ophthalmol Vis. 1985;16:1071–1074. PubMed
Moschos MM, Nitoda E. The Role of mf-ERG in the diagnosis and treatment of age-related macular degeneration: electrophysiological features of AMD. Semin Ophthalmol. 2018;33:461–469. doi: 10.1080/08820538.2017.1301496. PubMed DOI
Niermann F, Lorenz R, Heider W. Pattern electroretinography and pattern visual evoked potentials in maculopathy: a comparison with sensory tests. Fortschr Ophthalmol. 1989;86:54–58. PubMed
Perlman I, Segev E, Mazawi N, et al. Visual evoked cortical potential can be used to differentiate between uncorrected refractive error and macular disorders. Doc Ophthalmol. 2001;102:41–62. doi: 10.1023/a:1017539308389. PubMed DOI
Meredith JT, Celesia GG. Pattern-reversal visual evoked potentials and retinal eccentricity. Electroencephalogr Clin Neurophysiol. 1982;53:243–253. doi: 10.1016/0013-4694(82)90082-7. PubMed DOI
Langrová J, Kuba M, Kremláček J, et al. Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vision Res. 2006;46:536–544. doi: 10.1016/j.visres.2005.06.024. PubMed DOI
Kubova Z, Kuba M, Juran J, Blakemore C. Is the motion system relatively spared in amblyopia? evidence from cortical evoked responses. Vis Res. 1996;36:181–190. doi: 10.1016/0042-6989(95)00055-5. PubMed DOI
Zeri F, Berchicci M, Naroo SA, et al. Immediate cortical adaptation in visual and non-visual areas functions induced by monovision. J Physiol. 2018;596:253–266. doi: 10.1113/JP274896. PubMed DOI PMC
Kuba M, Kremláček J, Langrova J, et al. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res. 2012;62:9–16. doi: 10.1016/j.visres.2012.03.014. PubMed DOI