Cytoplasmic maturation in human oocytes: an ultrastructural study †
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33404651
PubMed Central
PMC7786262
DOI
10.1093/biolre/ioaa174
PII: 5909494
Knihovny.cz E-zdroje
- Klíčová slova
- cytoplasmic maturation, egg quality, electron microscopy, human oocyte, in vitro maturation, oocyte ultrastructure,
- MeSH
- cytoplazma účinky léků ultrastruktura MeSH
- dospělí MeSH
- endoplazmatické retikulum účinky léků ultrastruktura MeSH
- folikuly stimulující hormon farmakologie MeSH
- indukce ovulace MeSH
- lidé MeSH
- mitochondrie účinky léků ultrastruktura MeSH
- mladý dospělý MeSH
- oocyty účinky léků ultrastruktura MeSH
- oogeneze účinky léků fyziologie MeSH
- segregace chromozomů MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- folikuly stimulující hormon MeSH
Female fertility relies on successful egg development. Besides chromosome segregation, complex structural and biochemical changes in the cytoplasmic compartment are necessary to confer the female gamete the capacity to undergo normal fertilization and sustain embryonic development. Despite the profound impact on egg quality, morphological bases of cytoplasmic maturation remain largely unknown. Here, we report our findings from the ultrastructural analysis of 69 unfertilized human oocytes from 34 young and healthy egg donors. By comparison of samples fixed at three consecutive developmental stages, we explored how ooplasmic architecture changes during meiotic maturation in vitro. The morphometric image analysis supported observation that the major reorganization of cytoplasm occurs before polar body extrusion. The organelles initially concentrated around prophase nucleus were repositioned toward the periphery and evenly distributed throughout the ooplasm. As maturation progressed, distinct secretory apparatus appeared to transform into cortical granules that clustered underneath the oocyte's surface. The most prominent feature was the gradual formation of heterologous complexes composed of variable elements of endoplasmic reticulum and multiple mitochondria with primitive morphology. Based on the generated image dataset, we proposed a morphological map of cytoplasmic maturation, which may serve as a reference for future comparative studies. In conclusion, this work improves our understanding of human oocyte morphology, cytoplasmic maturation, and intracellular factors defining human egg quality. Although this analysis involved spare oocytes completing development in vitro, it provides essential insight into the enigmatic process by which human egg progenitors prepare for fertilization.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Reprofit International Clinic of Reproductive Medicine Brno Czech Republic
Zobrazit více v PubMed
Stitzel ML, Seydoux G. Regulation of the oocyte-to-zygote transition. Science 2007; 316:407–408. PubMed
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. Int Rev Cell Mol Biol 2008; 268:223–290. PubMed
Lu X, Gao Z, Qin D, Li L. A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med 2017; 23:1014–1023. PubMed
Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R. Oocyte maturation: Gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update 2015; 21:427–454. PubMed
Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Hum Reprod 2012; 27:i2–i21. PubMed
Watson AJ. Oocyte cytoplasmic maturation: A key mediator of oocyte and embryo developmental competence. J Anim Sci 2007; 85:E1–E3. PubMed
Kline D. Attributes and dynamics of the endoplasmic reticulum in mammalian eggs. Curr Top Dev Biol 2000; 50:125–154. PubMed
Brevini TA, Cillo F, Antonini S, Gandolfi F. Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim Reprod Sci 2007; 98:23–38. PubMed
Ferreira EM, Vireque AA, Adona PR, Meirelles FV, Ferriani RA, Navarro PA. Cytoplasmic maturation of bovine oocytes: Structural and biochemical modifications and acquisition of developmental competence. Theriogenology 2009; 71:836–848. PubMed
Mao L, Lou H, Lou Y, Wang N, Jin F. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online 2014; 28:284–299. PubMed
Holubcová Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 2015; 348:1143–1147. PubMed PMC
Sakakibara Y, Hashimoto S, Nakaoka Y, Kouznetsova A, Höög C, Kitajima TS. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat Commun 2015; 6:7550. PubMed PMC
Zielinska AP, Holubcova Z, Blayney M, Elder K, Schuh M. Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. Elife 2015; 4:e11389. PubMed PMC
Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, Nikiforov D, Chi-Ho Chan A, Newnham LJ, Vogel I, Scarica C, Krapchev M et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 2019; 365:1466–1469. PubMed PMC
Roeles J, Tsiavaliaris G. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat Commun 2019; 10:4651. PubMed PMC
Zamboni L, Thompson RS, Smith DM. Fine morphology of human oocyte maturation in vitro. Biol Reprod 1972; 7:425–457. PubMed
Sathananthan HA. Maturation of the human oocyte in vitro: Nuclear events during meiosis (an ultrastructural study). Gamete Res 1985; 12:237–254.
Sundström P, Nilsson BO, Liedholm P, Larsson E. Ultrastructure of maturing human oocytes. Ann N Y Acad Sci 1985; 442:324–331. PubMed
Szöllösi D, Mandelbaum J, Plachot M, Salat-Baroux J, Cohen J. Ultrastructure of the human preovulatory oocyte. J In Vitro Fert Embryo Transf 1986; 3:232–242. PubMed
Suzuki S, Kitai H, Tojo R, Seki K, Oba M, Fujiwara T, Iizuka R. Ultrastructure and some biologic properties of human oocytes and granulosa cells cultured in vitro. Fertil Steril 1981; 35:142–148. PubMed
Motta PM, Nottola SA, Micara G, Familiari G. Ultrastructure of human unfertilized oocytes and polyspermic embryos in an IVF-ET program. Ann N Y Acad Sci 1988; 541:367–383. PubMed
Yang YJ, Zhang YJ, Li Y. Ultrastructure of human oocytes of different maturity stages and the alteration during in vitro maturation. Fertil Steril 2009; 92:396.e1–396.e6. PubMed
Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, Bianchi S, Macchiarelli G, Borini A. Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online 2009; 19:17–27. PubMed
Shahedi A, Hosseini A, Khalili MA, Norouzian M, Salehi M, Piriaei A, Nottola SA. The effect of vitrification on ultrastructure of human in vitro matured germinal vesicle oocytes. Eur J Obstet Gynecol Reprod Biol 2013; 167:69–75. PubMed
Coticchio G, Dal Canto M, Fadini R, Mignini Renzini M, Guglielmo MC, Miglietta S, Palmerini MG, Macchiarelli G, Nottola SA. Ultrastructure of human oocytes after in vitro maturation. Mol Hum Reprod 2016; 22:110–118. PubMed
Segovia Y, Victory N, Peinado I, García-Valverde LM, García M, Aizpurua J, Monzó A, Gómez-Torres MJ. Ultrastructural characteristics of human oocytes vitrified before and after in vitro maturation. J Reprod Dev 2017; 63:377–382. PubMed PMC
Holubcová Z, Kyjovská D, Martonová M, Páralová D, Klenková T, Kloudová S. Human egg maturity assessment and its clinical application. J Vis Exp 2019; 150:e60058. doi: 10.3791/60058. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ et al. Fiji: An open-source platform for biological-image analysis. Nat Methods 2012; 9:676–682. PubMed PMC
Otsuki J, Nagai Y. A phase of chromosome aggregation during meiosis in human oocytes. Reprod Biomed Online 2007; 15:191–197. PubMed
Mehlmann LM, Terasaki M, Jaffe LA, Kline D. Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte. Dev Biol 1995; 170:607–615. PubMed
FitzHarris G, Marangos P, Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol 2007; 305:133–144. PubMed
Yu Y, Dumollard R, Rossbach A, Lai FA, Swann K. Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J Cell Physiol 2010; 224:672–680. PubMed PMC
Sathananthan AH. Ultrastructural changes during meiotic maturation in mammalian oocytes: Unique aspects of the human oocyte. Microsc Res Tech 1994; 27:145–164. PubMed
Longo FJ, Chen DY. Development of cortical polarity in mouse eggs: Involvement of the meiotic apparatus. Dev Biol 1985; 107:382–394. PubMed
Gulyas BJ. Cortical granules of mammalian eggs. Int Rev Cytol 1980; 63:357–392. PubMed
Sathananthan AH, Ng SC, Chia CM, Law HY, Edirisinghe WR, Ratnam SS. The origin and distribution of cortical granules in human oocytes with reference to Golgi, nucleolar, and microfilament activity. Ann N Y Acad Sci 1985; 442:251–264. PubMed
Ducibella T, Kurasawa S, Rangarajan S, Kopf GS, Schultz RM. Precocious loss of cortical granules during mouse oocyte meiotic maturation and correlation with an egg-induced modification of the zona pellucida. Dev Biol 1990; 137:46–55. PubMed
Otsuki J, Nagai Y, Chiba K. Lipofuscin bodies in human oocytes as an indicator of oocyte quality. J Assist Reprod Genet 2007; 24:263–270. PubMed PMC
Liu J, Lu G, Qian Y, Mao Y, Ding W. Pregnancies and births achieved from in vitro matured oocytes retrieved from poor responders undergoing stimulation in in vitro fertilization cycles. Fertil Steril 2003; 80:447–449. PubMed
Shu Y, Gebhardt J, Watt J, Lyon J, Dasig D, Behr B. Fertilization, embryo development, and clinical outcome of immature oocytes from stimulated intracytoplasmic sperm injection cycles. Fertil Steril 2007; 87:1022–1027. PubMed
Piqueras P, Gallardo M, Hebles M, Jiménez JM, Migueles B, Montero L, Sánchez-Martín F, Sánchez-Martín P. Live birth after replacement of an embryo obtained from a spontaneously in vitro matured metaphase-I oocyte. Syst Biol Reprod Med 2017; 63:209–211. PubMed
Holubcová Z, Kyjovská D, Martonová M, Páralová D, Klenková T, Otevřel P, Štěpánová R, Kloudová S, Hampl A. Egg maturity assessment prior to ICSI prevents premature fertilization of late-maturing oocytes. J Assist Reprod Genet 2019; 36:445–452. PubMed PMC
Gu NH, Zhao WL, Wang GS, Sun F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod Biol Endocrinol 2019; 17:66. PubMed PMC
Beuchat A, Thévenaz P, Unser M, Ebner T, Senn A, Urner F, Germond M, Sorzano COS. Quantitative morphometrical characterization of human pronuclear zygotes. Hum Reprod 2008; 23:1983–1992. PubMed
Tesarik J, Martinez F, Rienzi L, Ubaldi F, Iacobelli M, Mendoza C, Greco E. Microfilament disruption is required for enucleation and nuclear transfer in germinal vesicle but not metaphase II human oocytes. Fertil Steril 2003; 79:677–681. PubMed
Zhang J. Revisiting germinal vesicle transfer as a treatment for aneuploidy in infertile women with diminished ovarian reserve. J Assist Reprod Genet 2015; 32:313–317. PubMed PMC
Reznichenko AS, Huyser C, Pepper MS. Mitochondrial transfer: Implications for assisted reproductive technologies. Appl Transl Genom 2016; 11:40–47. PubMed PMC
Koch GL. The endoplasmic reticulum and calcium storage. Bioessays 1990; 12:527–531. PubMed
Sá R, Cunha M, Silva J, Luís A, Oliveira C, Teixeira da Silva J, Barros A, Sousa M. Ultrastructure of tubular smooth endoplasmic reticulum aggregates in human metaphase II oocytes and clinical implications. Fertil Steril 2011; 96:143–9.e7. PubMed
Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 2000; 15:129–147. PubMed
Youle RJ, Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337:1062–1065. PubMed PMC
Paula WB, Agip AN, Missirlis F, Ashworth R, Vizcay-Barrena G, Lucas CH, Allen JF. Female and male gamete mitochondria are distinct and complementary in transcription, structure, and genome function. Genome Biol Evol 2013; 5:1969–1977. PubMed PMC
Dvoŕak M, Tesarík J, Pilka L, Trávník P. Fine structure of human two-cell ova fertilized and cleaved in vitro. Fertil Steril 1982; 37:661–667. PubMed
Pereda J, Croxatto HB. Ultrastructure of a seven-cell human embryo. Biol Reprod 1978; 18:481–489. PubMed
Mohr LR, Trounson AO. Comparative ultrastructure of hatched human, mouse and bovine blastocysts. J Reprod Fertil 1982; 66:499–504. PubMed
Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril 2001; 76:1175–1180. PubMed
Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, Park KS, Lee HK. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 2006; 348:1472–1478. PubMed
Tobias IC, Khazaee R, Betts DH. Analysis of mitochondrial dimensions and cristae structure in pluripotent stem cells using transmission electron microscopy. Curr Protoc Stem Cell Biol 2018; 47:e67. PubMed
Uraji J, Scheffler K, Schuh M. Functions of actin in mouse oocytes at a glance. J Cell Sci 2018; 131:jcs218099. PubMed
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis. Biol Reprod 2019; 100:15–24. PubMed
Holubcová Z, Howard G, Schuh M. Vesicles modulate an actin network for asymmetric spindle positioning. Nat Cell Biol 2013; 15:937–947. PubMed PMC
Aida T, Oda S, Awaji T, Yoshida K, Miyazaki S. Expression of a green fluorescent protein variant in mouse oocytes by injection of RNA with an added long poly(A) tail. Mol Hum Reprod 2001; 7:1039–1046. PubMed
Sousa Martins JP, Liu X, Oke A, Arora R, Franciosi F, Viville S, Laird DJ, Fung JC, Conti M. DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. J Cell Sci 2016; 129:1271–1282. PubMed PMC
Tetkova A, Susor A, Kubelka M, Nemcova L, Jansova D, Dvoran M, Del Llano E, Holubcova Z, Kalous J. Follicle-stimulating hormone administration affects amino acid metabolism in mammalian oocytes. Biol Reprod 2019; 101:719–732. PubMed
Danev R, Yanagisawa H, Kikkawa M. Cryo-electron microscopy methodology: Current aspects and future directions. Trends Biochem Sci 2019; 44:837–848. PubMed
Briggman KL, Bock DD. Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 2012; 22:154–161. PubMed
Tachibana M, Kuno T, Yaegashi N. Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reprod Med Biol 2018; 17:421–433. PubMed PMC