Tissue-specific protective properties of lithium: comparison of rat kidney, erythrocytes and brain

. 2021 May ; 394 (5) : 955-965. [epub] 20210106

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33404687
Odkazy

PubMed 33404687
DOI 10.1007/s00210-020-02036-4
PII: 10.1007/s00210-020-02036-4
Knihovny.cz E-zdroje

Lithium (Li) represents a first choice mood stabilizer for bipolar disorder (BD). Despite extensive clinical use, questions regarding its mechanism of action and pathological mechanism of renal function impairment by Li remain open. The present study aimed to improve our knowledge in this area paying special attention to the relationship between the length of Li action, lipid peroxidation (LP), and Na+/K+-ATPase properties. The effects of therapeutic Li doses, administered daily to male Wistar rats for 1 (acute), 7 (short term) and 28 days (chronic), were studied. For this purpose, Na+/K+-ATPase activity measurements, [3H]ouabain binding and immunoblot analysis of α-Na+/K+-ATPase were performed. Li-induced LP was evaluated by determining the malondialdehyde concentration by HPLC. Sleep deprivation (SD) was used as an experimental approach to model the manic phase of BD. Results obtained from the kidney were compared to those obtained from erythrocytes and different brain regions in the same tested animals. Whereas treatment with therapeutic Li concentration did not bring any LP damage nor significant changes of Na+/K+-ATPase expression and [3H]ouabain binding in the kidney, it conferred strong protection against this type of damage in the forebrain cortex. Importantly, the observed changes in erythrocytes indicated changes in forebrain cortices. Thus, different resistance to SD-induced changes of LP and Na+/K+-ATPase was detected in the kidney, erythrocytes and the brain of Li-treated rats. Our study revealed the tissue-specific protective properties of Li against LP and Na+/K+-ATPase regulation.

Zobrazit více v PubMed

Alda M (2015) Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 20:661–670. https://doi.org/10.1038/mp.2015.4 PubMed DOI PMC

Alsady M, Baumgarten R, Deen PM, de Groot T (2016) Lithium in the kidney: friend and foe? J Am Soc Nephrol 27:1587–1595. https://doi.org/10.1681/asn.2015080907 PubMed DOI

Andrabi M et al (2019) Lithium acts to modulate abnormalities at behavioral, cellular, and molecular levels in sleep deprivation-induced mania-like behavior. Bipolar Disord. https://doi.org/10.1111/bdi.12838

Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438 DOI

Azab AN, Shnaider A, Osher Y, Wang D, Bersudsky Y, Belmaker RH (2015) Lithium nephrotoxicity. Int J Bipolar Disord 3:28. https://doi.org/10.1186/s40345-015-0028-y PubMed DOI

Baldessarini RJ, Tondo L, Vazquez GH (2019) Pharmacological treatment of adult bipolar disorder. Mol Psychiatry 24:198–217. https://doi.org/10.1038/s41380-018-0044-2 PubMed DOI

Banerjee U, Dasgupta A, Rout JK, Singh OP (2012) Effects of lithium therapy on Na + -K + -ATPase activity and lipid peroxidation in bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 37:56–61. https://doi.org/10.1016/j.pnpbp.2011.12.006 DOI

Behl T, Kotwani A, Kaur I, Goel H (2015) Mechanisms of prolonged lithium therapy-induced nephrogenic diabetes insipidus. Eur J Pharmacol 755:27–33. https://doi.org/10.1016/j.ejphar.2015.02.040 PubMed DOI

Can A, Schulze TG, Gould TD (2014) Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 123:3–16. https://doi.org/10.1016/j.pbb.2014.02.004 PubMed DOI PMC

Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11. https://doi.org/10.1016/j.chemphyslip.2008.09.004 PubMed DOI

Catala A (2014) Lipid peroxidation modifies the assembly of biological membranes “The Lipid Whisker Model”. Front Physiol 5:520. https://doi.org/10.3389/fphys.2014.00520 PubMed DOI

Choi J, Yin T, Shinozaki K, Lampe JW, Stevens JF, Becker LB, Kim J (2018) Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Mol Cell Biochem 442:187–201. https://doi.org/10.1007/s11010-017-3203-x PubMed DOI

de Vasconcellos AP et al (2006) Chronic lithium treatment has antioxidant properties but does not prevent oxidative damage induced by chronic variate stress. Neurochem Res 31:1141–1151. https://doi.org/10.1007/s11064-006-9139-2 PubMed DOI

Easley JR (1982) The effect of lithium chloride on renal structure and sodium-potassium-adenosine triphosphatase activity in dogs. Vet Pathol 19:38–45. https://doi.org/10.1177/030098588201900107 PubMed DOI

el-Mallakh RS, Wyatt RJ (1995) The Na,K-ATPase hypothesis for bipolar illness. Biol Psychiatry 37:235–244. https://doi.org/10.1016/0006-3223(94)00201-D PubMed DOI

Frey BN et al (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332 PubMed PMC

Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S (2001) Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology 158:100–106. https://doi.org/10.1007/s002130100871 PubMed DOI

Gawlik-Kotelnicka O, Mielicki W, Rabe-Jabłońska J, Lazarek J, Strzelecki D (2016) Impact of lithium alone or in combination with haloperidol on oxidative stress parameters and cell viability in SH-SY5Y cell culture. Acta Neuropsychiatr 28:38–44. https://doi.org/10.1017/neu.2015.47 PubMed DOI

Gawlik-Kotelnicka O, Mielicki W, Rabe-Jabłońska J, Strzelecki D (2015) Impact of lithium alone or in combination with haloperidol on selected oxidative stress parameters in human plasma in vitro. Redox Rep. https://doi.org/10.1179/1351000215y.0000000030

Gong R, Wang P, Dworkin L (2016) What we need to know about the effect of lithium on the kidney. Am J Physiol Ren Physiol 311:F1168–F1171. https://doi.org/10.1152/ajprenal.00145.2016 DOI

Guerri C, Ribelles M, Grisolía S (1981) Effects of lithium, and lithium and alcohol administration on (Na + K)-ATPase. Biochem Pharmacol 30:25–30 DOI

Gutman Y, Hochman S, Wald H (1973) The differential effect of Li + on microsomal ATPase in cortex, medulla and papilla of the rat kidney. Biochim Biophys Acta 298:284–290 DOI

Kassak P, Sikurova L, Kvasnicka P, Bryszewska M (2006) The response of Na+/K+ -ATPase of human erythrocytes to green laser light treatment. Physiol Res 55:189–194 PubMed

Khairova R et al (2012) Effects of lithium on oxidative stress parameters in healthy subjects. Mol Med Rep 5:680–682. https://doi.org/10.3892/mmr.2011.732 PubMed DOI

Kielczykowska M, Pasternak K, Musik I, Wroniska J (2004) The effect of lithium administration in a diet on the chosen parameters of the antioxidant barrier in rats. Ann Univ Mariae Curie Sklodowska Med 59:140–145 PubMed

Kielczykowska M, Pasternak K, Musik J, Wronska-Tyra J, Hordyjewska A (2006) The influence of different doses of lithium administred in drinking water on lipid peroxidation and the activity of antioxidant enzymes in rats. Pol J Environ Stud 15:747–751

Kishore BK, Ecelbarger CM (2013) Lithium: a versatile tool for understanding renal physiology. Am J Physiol Ren Physiol 304:F1139–F1149. https://doi.org/10.1152/ajprenal.00718.2012 DOI

Laursen UH, Pihakaski-Maunsbach K, Kwon TH, Østergaard Jensen E, Nielsen S, Maunsbach AB (2004) Changes of rat kidney AQP2 and Na,K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol 97:e1–e16. https://doi.org/10.1159/000077593 PubMed DOI

Le-Niculescu H et al (2009) Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14:156–174. https://doi.org/10.1038/mp.2008.11 PubMed DOI

Le-Niculescu H et al (2013) Discovery and validation of blood biomarkers for suicidality. Mol Psychiatry 18:1249–1264. https://doi.org/10.1038/mp.2013.95 PubMed DOI PMC

Logan RW, McClung CA (2016) Animal models of bipolar mania: The past, present and future. Neuroscience 321:163–188. https://doi.org/10.1016/j.neuroscience.2015.08.041 PubMed DOI

Machado-Vieira R et al (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36. https://doi.org/10.1016/j.neulet.2007.05.016 PubMed DOI

Nciri R, Allagui MS, Bourogaa E, Saoudi M, Murat JC, Croute F, Elfeki A (2012) Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. J Physiol Biochem 68:11–18. https://doi.org/10.1007/s13105-011-0113-3 PubMed DOI

Nciri R, Allagui MS, Vincent C, Murat JC, Croute F, El Feki A (2010) Chronic lithium administration triggers an over-expression of GRP94 stress protein isoforms in mouse liver. Food Chem Toxicol 48:1638–1643. https://doi.org/10.1016/j.fct.2010.03.038 PubMed DOI

Nciri R, Desmoulin F, Allagui MS, Murat JC, Feki AE, Vincent C, Croute F (2013) Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress. Int J Neuropsychopharmacol 16:365–376. https://doi.org/10.1017/s1461145712000132 PubMed DOI

Oktem F, Ozguner F, Sulak O, Olgar S, Akturk O, Yilmaz HR, Altuntas I (2005) Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Mol Cell Biochem 277:109–115. https://doi.org/10.1007/s11010-005-5426-5 PubMed DOI

Ossani GP, Uceda AM, Acosta JM, Lago NR, Repetto MG, Martino DJ, Toblli JE (2019) Role of oxidative stress in lithium-induced nephropathy. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1617-2

Riegel RE et al (2010) Intracerebroventricular ouabain administration induces oxidative stress in the rat brain. Int J Dev Neurosci 28:233–237. https://doi.org/10.1016/j.ijdevneu.2010.02.002 PubMed DOI

Seifert R, Schirmer B (2020) A simple mechanistic terminology of psychoactive drugs: a proposal. Naunyn Schmiedeberg's Arch Pharmacol 393:1331–1339. https://doi.org/10.1007/s00210-020-01918-x DOI

Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884. https://doi.org/10.1016/j.biopsych.2005.04.052 PubMed DOI

Ujcikova H et al (2014) Opioid-Receptor (OR) Signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure. Physiol Res 63:S165–S176 DOI

Vosahlikova M, Roubalova L, Ujcikova H, Hlouskova M, Musil S, Alda M, Svoboda P (2019) Na(+)/K(+)-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28 days); studies of Jurkat and HEK293 cells Naunyn Schmiedebergs. Arch Pharmacol 392:785–799. https://doi.org/10.1007/s00210-019-01631-4 DOI

Vosahlikova M, Svoboda P (2016) Lithium - therapeutic tool endowed with multiple beneficiary effects caused by multiple mechanisms. Acta Neurobiol Exp 76:1–19

Vosahlikova M, Ujcikova H, Chernyayskiy O, Brejchova J, Roubalova L, Alda M, Svoboda P (2017) Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K + -ATPase, change of overall protein composition and alteration of surface layer of plasma membrane. Biochim Biophys Acta-Gen Subj 1861:1099–1112. https://doi.org/10.1016/j.bbagen.2017.02.011 PubMed DOI

Vosahlikova M, Ujcikova H, Hlouskova M, Musil S, Roubalova L, Alda M, Svoboda P (2018) Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function. Biochem Pharmacol 154:452–463. https://doi.org/10.1016/j.bcp.2018.06.004 PubMed DOI

Vosahlikova M et al. (2020) Na(+)/K(+)-ATPase and lipid peroxidation in forebrain cortex and hippocampus of sleep-deprived rats treated with therapeutic lithium concentration for different periods of time. Prog Neuropsychopharmacol Biol Psychiatry 109953 doi: https://doi.org/10.1016/j.pnpbp.2020.109953

Wu BJ, Else PL, Storlien LH, Hulbert AJ (2001) Molecular activity of Na(+)/K(+)-ATPase from different sources is related to the packing of membrane lipids. J Exp Biol 204:4271–4280 DOI

Yoshida Y, Umeno A, Shichiri M (2013) Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr 52:9–16. https://doi.org/10.3164/jcbn.12-112 PubMed DOI

Young W (2009) Review of lithium effects on brain and blood. Cell Transplant 18:951–975. https://doi.org/10.3727/096368909X471251 PubMed DOI

Zhang XY, Yao JK (2013) Oxidative stress and therapeutic implications in psychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 46:197–199. https://doi.org/10.1016/j.pnpbp.2013.03.003 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace