Targeting B Cells to Modify MS, NMOSD, and MOGAD: Part 1

. 2021 Jan ; 8 (1) : . [epub] 20201216

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33406479

Grantová podpora
R01 AI131624 NIAID NIH HHS - United States

Ocrelizumab, rituximab, ofatumumab, ublituximab, inebilizumab, and evobrutinib are immunotherapies that target various B cell-related proteins. Most of these treatments have proven efficacy in relapsing and progressive forms of MS and neuromyelitis optica spectrum disease (NMOSD), or are in advanced stages of clinical development. Currently, ocrelizumab, ofatumumab, and inebilizumab are licensed for treatment of MS and NMOSD, respectively. This review focuses on the current state of knowledge about the role of B lymphocytes in immune-mediated pathophysiology and its implications for the mode of action. To understand the significance of this breakthrough in the context of the current MS therapeutic armamentarium, this review more closely examines the clinical development of CD20 depletion and the pioneering contribution of rituximab. Phase 3 and the recently published postmarketing studies will be highlighted to better understand the relevant efficacy data and safety aspects of long-term B-cell depletion.

Zobrazit více v PubMed

Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet 2018;391:1622–1636. PubMed

Lublin FD, Coetzee T, Cohen JA, Marrie RA, Thompson AJ. The 2013 clinical course descriptors for multiple sclerosis: a clarification. Neurology 2020:94:1088–1092. PubMed PMC

Lublin FD, Reingold SC, Cohen JA, et al. . Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014;83:278–286. PubMed PMC

Lublin FD. New multiple sclerosis phenotypic classification. Eur Neurol 2014;72(suppl 1):1–5. PubMed

Kinzel S, Weber MS. B cell-directed therapeutics in multiple sclerosis: rationale and clinical evidence. CNS Drugs 2016;30:1137–1148. PubMed

Gingele S, Skripuletz T, Jacobs R. Role of CD20+ T cells in multiple sclerosis: implications for treatment with ocrelizumab. Neural Regen Res 2020;15:663–664. PubMed PMC

Wu Y, Zhong L, Geng J. Neuromyelitis optica spectrum disorder: pathogenesis, treatment, and experimental models. Mult Scler Relat Disord 2019;27:412–418. PubMed

Kawachi I, Lassmann H. Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 2017;88:137–145. PubMed

Mader S, Kümpfel T, Meinl E. Novel insights into pathophysiology and therapeutic possibilities reveal further differences between AQP4-IgG- and MOG-IgG-associated diseases. Curr Opin Neurol 2020;33:362–371. PubMed

Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflamm 2015;2:e62. PubMed PMC

Jarius S, Ruprecht K, Kleiter I, et al. . MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016;13:280. PubMed PMC

Papathanasiou A, Tanasescu R, Davis J, et al. . MOG-IgG-associated demyelination: focus on atypical features, brain histopathology and concomitant autoimmunity. J Neurol 2020;267:359–368. PubMed

Höftberger R, Guo Y, Flanagan EP, et al. . The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol 2020;139:875–892. PubMed PMC

Fujihara K, Cook LJ. Neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease: current topics. Curr Opin Neurol 2020;33:300–308. PubMed

Jurynczyk M, Messina S, Woodhall MR, et al. . Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 2017;140:3128–3138. PubMed

Takai Y, Misu T, Kaneko K, et al. . Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain 2020;143:1431–1446. PubMed

Hor JY, Asgari N, Nakashima I, et al. . Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front Neurol 2020;11:501. PubMed PMC

Sabatino JJ, Pröbstel A-K, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019;20:728–745. PubMed

Sabatino JJ, Pröbstel A-K, Zamvil SS. Publisher Correction: B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2020;21:56. PubMed

Sellebjerg F, Blinkenberg M, Sorensen PS. Anti-CD20 monoclonal antibodies for relapsing and progressive multiple sclerosis. CNS Drugs 2020;34:269–280. PubMed

Kim S-H, Hyun J-W, Kim HJ. Individualized B cell-targeting therapy for neuromyelitis optica spectrum disorder. Neurochem Int 2019;130:104347. PubMed

Stüve O, Cepok S, Elias B, et al. . Clinical stabilization and effective B-lymphocyte depletion in the cerebrospinal fluid and peripheral blood of a patient with fulminant relapsing-remitting multiple sclerosis. Arch Neurol 2005;62:1620–1623. PubMed

Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 2005;62:258–264. PubMed

Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons J-A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006;180:63–70. PubMed PMC

Leussink VI, Lehmann HC, Meyer zu Hörste G, Hartung H-P, Stüve O, Kieseier BC. Rituximab induces clinical stabilization in a patient with fulminant multiple sclerosis not responding to natalizumab. Evidence for disease heterogeneity. J Neurol 2008;255:1436–1438. PubMed

Stüve O, Leussink VI, Fröhlich R, et al. . Long-term B-lymphocyte depletion with rituximab in patients with relapsing-remitting multiple sclerosis. Arch Neurol 2009;66:259–261. PubMed

Cree BAC, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology 2005;64:1270–1272. PubMed

Jacob A, Weinshenker BG, Violich I, et al. . Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol 2008;65:1443–1448. PubMed

Pellkofer HL, Krumbholz M, Berthele A, et al. . Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 2011;76:1310–1315. PubMed

Beers SA, Chan CHT, French RR, Cragg MS, Glennie MJ. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 2010;47:107–114. PubMed

Fox E, Lovett-Racke AE, Gormley M, et al. . A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler 2020:1352458520918375. PubMed PMC

Teeling JL, Mackus WJM, Wiegman LJJM, et al. . The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006;177:362–371. PubMed

Rougé L, Chiang N, Steffek M, et al. . Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 2020;367:1224–1230. PubMed

Klein C, Lammens A, Schäfer W, et al. . Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 2013;5:22–33. PubMed PMC

Niederfellner G, Lammens A, Mundigl O, et al. . Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 2011;118:358–367. PubMed

Kumar A, Planchais C, Fronzes R, Mouquet H, Reyes N. Binding mechanisms of therapeutic antibodies to human CD20. Science 2020;369:793–799. PubMed

Bondza S, Broeke Tten, Nestor M, Leusen JHW, Buijs J. Bivalent binding on cells varies between anti-CD20 antibodies and is dose-dependent. MAbs 2020;12:1792673. PubMed PMC

Hawker K, O'Connor P, Freedman MS, et al. . Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009;66:460–471. PubMed

Montalban X, Hauser SL, Kappos L, et al. . Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 2017;376:209–220. PubMed

Barnas JL, Looney RJ, Anolik JH. B cell targeted therapies in autoimmune disease. Curr Opin Immunol 2019;61:92–99. PubMed PMC

Molnarfi N, Schulze-Topphoff U, Weber MS, et al. . MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med. 2013;210:2921–2937. PubMed PMC

Montalban X, Arnold DL, Weber MS, et al. . Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med 2019;380:2406–2417. PubMed

Bar-Or A, Grove RA, Austin DJ, et al. . Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: the MIRROR study. Neurology 2018;90:e1805-e1814. PubMed PMC

Freeman CL, Sehn LH. A tale of two antibodies: obinutuzumab versus rituximab. Br J Haematol 2018;182:29–45. PubMed

Svenningsson A, Bergman J, Dring A, et al. . Rapid depletion of B lymphocytes by ultra-low-dose rituximab delivered intrathecally. Neurol Neuroimmunol Neuroinflamm 2015;2:e79. PubMed PMC

Komori M, Lin YC, Cortese I, et al. . Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol 2016;3:166–179. PubMed PMC

Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018;19:696–707. PubMed

Bar-Or A, Fawaz L, Fan B, et al. . Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010;67:452–461. PubMed

Weber MS, Prod'homme T, Patarroyo JC, et al. . B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010;68:369–383. PubMed PMC

Rahmanzadeh R, Weber MS, Brück W, Navardi S, Sahraian MA. B cells in multiple sclerosis therapy-A comprehensive review. Acta Neurol Scand 2018;137:544–556. PubMed

Sospedra M. B cells in multiple sclerosis. Curr Opin Neurol 2018;31:256–262. PubMed

Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron 2018;97:742–768. PubMed

Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol 2018;83:13–26. PubMed PMC

Rommer PS, Milo R, Han MH, et al. . Immunological aspects of approved MS therapeutics. Front Immunol 2019;10:1564. PubMed PMC

Comi G, Bar-Or A, Lassmann H, et al. . The role of B cells in multiple Sclerosis and related disorders. Ann Neurol 2020 Oct 9. doi: 10.1002/ana.2592 PubMed DOI PMC

Ransohoff RM. Immune-cell crosstalk in multiple sclerosis. Nature 2018;563:194–195. PubMed

Márquez AC, Horwitz MS. The role of latently infected B cells in CNS autoimmunity. Front Immunol 2015;6:544. PubMed PMC

Bar-Or A, Pender MP, Khanna R, et al. . Epstein-barr virus in multiple sclerosis: theory and emerging immunotherapies. Trends Mol Med 2020;26:296–310. PubMed PMC

Anthony DC, Dickens AM, Seneca N, et al. . Anti-CD20 inhibits T cell-mediated pathology and microgliosis in the rat brain. Ann Clin Transl Neurol 2014;1:659–669. PubMed PMC

Chen D, Ireland SJ, Remington G, et al. . CD40-Mediated NF-κB activation in B cells is increased in multiple sclerosis and modulated by therapeutics. J Immunol 2016;197:4257–4265. PubMed PMC

Data available from Dryad. Additional references (e1-e103) available at: links.lww.com/NXI/A354.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...