Targeting B Cells to Modify MS, NMOSD, and MOGAD: Part 1
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 AI131624
NIAID NIH HHS - United States
PubMed
33406479
PubMed Central
PMC8063619
DOI
10.1212/nxi.0000000000000918
PII: 8/1/e918
Knihovny.cz E-zdroje
- MeSH
- antigeny CD20 účinky léků imunologie MeSH
- B-lymfocyty účinky léků imunologie MeSH
- imunologické faktory farmakologie MeSH
- lidé MeSH
- neuromyelitis optica farmakoterapie imunologie MeSH
- roztroušená skleróza farmakoterapie imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antigeny CD20 MeSH
- imunologické faktory MeSH
Ocrelizumab, rituximab, ofatumumab, ublituximab, inebilizumab, and evobrutinib are immunotherapies that target various B cell-related proteins. Most of these treatments have proven efficacy in relapsing and progressive forms of MS and neuromyelitis optica spectrum disease (NMOSD), or are in advanced stages of clinical development. Currently, ocrelizumab, ofatumumab, and inebilizumab are licensed for treatment of MS and NMOSD, respectively. This review focuses on the current state of knowledge about the role of B lymphocytes in immune-mediated pathophysiology and its implications for the mode of action. To understand the significance of this breakthrough in the context of the current MS therapeutic armamentarium, this review more closely examines the clinical development of CD20 depletion and the pioneering contribution of rituximab. Phase 3 and the recently published postmarketing studies will be highlighted to better understand the relevant efficacy data and safety aspects of long-term B-cell depletion.
Zobrazit více v PubMed
Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet 2018;391:1622–1636. PubMed
Lublin FD, Coetzee T, Cohen JA, Marrie RA, Thompson AJ. The 2013 clinical course descriptors for multiple sclerosis: a clarification. Neurology 2020:94:1088–1092. PubMed PMC
Lublin FD, Reingold SC, Cohen JA, et al. . Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014;83:278–286. PubMed PMC
Lublin FD. New multiple sclerosis phenotypic classification. Eur Neurol 2014;72(suppl 1):1–5. PubMed
Kinzel S, Weber MS. B cell-directed therapeutics in multiple sclerosis: rationale and clinical evidence. CNS Drugs 2016;30:1137–1148. PubMed
Gingele S, Skripuletz T, Jacobs R. Role of CD20+ T cells in multiple sclerosis: implications for treatment with ocrelizumab. Neural Regen Res 2020;15:663–664. PubMed PMC
Wu Y, Zhong L, Geng J. Neuromyelitis optica spectrum disorder: pathogenesis, treatment, and experimental models. Mult Scler Relat Disord 2019;27:412–418. PubMed
Kawachi I, Lassmann H. Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 2017;88:137–145. PubMed
Mader S, Kümpfel T, Meinl E. Novel insights into pathophysiology and therapeutic possibilities reveal further differences between AQP4-IgG- and MOG-IgG-associated diseases. Curr Opin Neurol 2020;33:362–371. PubMed
Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflamm 2015;2:e62. PubMed PMC
Jarius S, Ruprecht K, Kleiter I, et al. . MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016;13:280. PubMed PMC
Papathanasiou A, Tanasescu R, Davis J, et al. . MOG-IgG-associated demyelination: focus on atypical features, brain histopathology and concomitant autoimmunity. J Neurol 2020;267:359–368. PubMed
Höftberger R, Guo Y, Flanagan EP, et al. . The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol 2020;139:875–892. PubMed PMC
Fujihara K, Cook LJ. Neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease: current topics. Curr Opin Neurol 2020;33:300–308. PubMed
Jurynczyk M, Messina S, Woodhall MR, et al. . Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 2017;140:3128–3138. PubMed
Takai Y, Misu T, Kaneko K, et al. . Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain 2020;143:1431–1446. PubMed
Hor JY, Asgari N, Nakashima I, et al. . Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front Neurol 2020;11:501. PubMed PMC
Sabatino JJ, Pröbstel A-K, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019;20:728–745. PubMed
Sabatino JJ, Pröbstel A-K, Zamvil SS. Publisher Correction: B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2020;21:56. PubMed
Sellebjerg F, Blinkenberg M, Sorensen PS. Anti-CD20 monoclonal antibodies for relapsing and progressive multiple sclerosis. CNS Drugs 2020;34:269–280. PubMed
Kim S-H, Hyun J-W, Kim HJ. Individualized B cell-targeting therapy for neuromyelitis optica spectrum disorder. Neurochem Int 2019;130:104347. PubMed
Stüve O, Cepok S, Elias B, et al. . Clinical stabilization and effective B-lymphocyte depletion in the cerebrospinal fluid and peripheral blood of a patient with fulminant relapsing-remitting multiple sclerosis. Arch Neurol 2005;62:1620–1623. PubMed
Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 2005;62:258–264. PubMed
Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons J-A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006;180:63–70. PubMed PMC
Leussink VI, Lehmann HC, Meyer zu Hörste G, Hartung H-P, Stüve O, Kieseier BC. Rituximab induces clinical stabilization in a patient with fulminant multiple sclerosis not responding to natalizumab. Evidence for disease heterogeneity. J Neurol 2008;255:1436–1438. PubMed
Stüve O, Leussink VI, Fröhlich R, et al. . Long-term B-lymphocyte depletion with rituximab in patients with relapsing-remitting multiple sclerosis. Arch Neurol 2009;66:259–261. PubMed
Cree BAC, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology 2005;64:1270–1272. PubMed
Jacob A, Weinshenker BG, Violich I, et al. . Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol 2008;65:1443–1448. PubMed
Pellkofer HL, Krumbholz M, Berthele A, et al. . Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 2011;76:1310–1315. PubMed
Beers SA, Chan CHT, French RR, Cragg MS, Glennie MJ. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 2010;47:107–114. PubMed
Fox E, Lovett-Racke AE, Gormley M, et al. . A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler 2020:1352458520918375. PubMed PMC
Teeling JL, Mackus WJM, Wiegman LJJM, et al. . The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006;177:362–371. PubMed
Rougé L, Chiang N, Steffek M, et al. . Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 2020;367:1224–1230. PubMed
Klein C, Lammens A, Schäfer W, et al. . Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 2013;5:22–33. PubMed PMC
Niederfellner G, Lammens A, Mundigl O, et al. . Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 2011;118:358–367. PubMed
Kumar A, Planchais C, Fronzes R, Mouquet H, Reyes N. Binding mechanisms of therapeutic antibodies to human CD20. Science 2020;369:793–799. PubMed
Bondza S, Broeke Tten, Nestor M, Leusen JHW, Buijs J. Bivalent binding on cells varies between anti-CD20 antibodies and is dose-dependent. MAbs 2020;12:1792673. PubMed PMC
Hawker K, O'Connor P, Freedman MS, et al. . Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009;66:460–471. PubMed
Montalban X, Hauser SL, Kappos L, et al. . Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 2017;376:209–220. PubMed
Barnas JL, Looney RJ, Anolik JH. B cell targeted therapies in autoimmune disease. Curr Opin Immunol 2019;61:92–99. PubMed PMC
Molnarfi N, Schulze-Topphoff U, Weber MS, et al. . MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med. 2013;210:2921–2937. PubMed PMC
Montalban X, Arnold DL, Weber MS, et al. . Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med 2019;380:2406–2417. PubMed
Bar-Or A, Grove RA, Austin DJ, et al. . Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: the MIRROR study. Neurology 2018;90:e1805-e1814. PubMed PMC
Freeman CL, Sehn LH. A tale of two antibodies: obinutuzumab versus rituximab. Br J Haematol 2018;182:29–45. PubMed
Svenningsson A, Bergman J, Dring A, et al. . Rapid depletion of B lymphocytes by ultra-low-dose rituximab delivered intrathecally. Neurol Neuroimmunol Neuroinflamm 2015;2:e79. PubMed PMC
Komori M, Lin YC, Cortese I, et al. . Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol 2016;3:166–179. PubMed PMC
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018;19:696–707. PubMed
Bar-Or A, Fawaz L, Fan B, et al. . Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010;67:452–461. PubMed
Weber MS, Prod'homme T, Patarroyo JC, et al. . B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010;68:369–383. PubMed PMC
Rahmanzadeh R, Weber MS, Brück W, Navardi S, Sahraian MA. B cells in multiple sclerosis therapy-A comprehensive review. Acta Neurol Scand 2018;137:544–556. PubMed
Sospedra M. B cells in multiple sclerosis. Curr Opin Neurol 2018;31:256–262. PubMed
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron 2018;97:742–768. PubMed
Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol 2018;83:13–26. PubMed PMC
Rommer PS, Milo R, Han MH, et al. . Immunological aspects of approved MS therapeutics. Front Immunol 2019;10:1564. PubMed PMC
Comi G, Bar-Or A, Lassmann H, et al. . The role of B cells in multiple Sclerosis and related disorders. Ann Neurol 2020 Oct 9. doi: 10.1002/ana.2592 PubMed DOI PMC
Ransohoff RM. Immune-cell crosstalk in multiple sclerosis. Nature 2018;563:194–195. PubMed
Márquez AC, Horwitz MS. The role of latently infected B cells in CNS autoimmunity. Front Immunol 2015;6:544. PubMed PMC
Bar-Or A, Pender MP, Khanna R, et al. . Epstein-barr virus in multiple sclerosis: theory and emerging immunotherapies. Trends Mol Med 2020;26:296–310. PubMed PMC
Anthony DC, Dickens AM, Seneca N, et al. . Anti-CD20 inhibits T cell-mediated pathology and microgliosis in the rat brain. Ann Clin Transl Neurol 2014;1:659–669. PubMed PMC
Chen D, Ireland SJ, Remington G, et al. . CD40-Mediated NF-κB activation in B cells is increased in multiple sclerosis and modulated by therapeutics. J Immunol 2016;197:4257–4265. PubMed PMC
Data available from Dryad. Additional references (e1-e103) available at: links.lww.com/NXI/A354.