Relationship between exploratory activity and adrenocortical activity in the black rat (Rattus rattus)

. 2021 Feb ; 335 (2) : 286-295. [epub] 20210107

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33411407

The relationship between physiological and behavioral stress markers is documented in several rodent species. However, there is no information regarding the role of adrenocortical activity in behavior of the black rat (Rattus rattus). Therefore, we hypothesize that the adrenocortical activity of black rats varies between individuals and is related to some of the behaviors in a novel environment. To test this hypothesis, we (i) validated a method for quantifying glucocorticoid metabolites from feces (fGCMs) with an enzyme immunoassay (EIA); (ii) examined variation and diurnal rhythms of feces and GCM production; and (iii) examined the relationship between GCM levels and exploratory behavioral traits. We fulfilled the first aim (i) by successfully performing an ACTH challenge test to validate the use of a 5α-pregnane-3β,11β,21-triol-20-one EIA for measuring fGCMs. Second (ii) we detected considerable consistent interindividual variability in production of both feces and glucocorticoids. The peak production of feces occurred in the first hour of the dark cycle, the peak of fGCMs occurred approximately 3 h later. Lastly, (iii) there was no clear relationship between behavior in the hole board test and GCMs. Grooming, a typical behavioral stress marker, was negatively associated with stress reactivity, while head-dipping in the hole-board test (traditionally considered an exploratory behavior independent of stress) was not correlated with the GCMs. This study offers a first look at GCMs in the black rat, successfully validates a method for their measurement and opens possibilities for future research of the relationship between glucocorticoids and exploratory behavior in this species.

Zobrazit více v PubMed

Abel, E. L. (1995). Further evidence for the dissociation of locomotor activity and head dipping in rats. Physiology & Behavior, 57(3), 529-532.

Archer, J. (1973). Tests for emotionality in rats and mice: A review. Animal Behaviour, 21(2), 205-235. https://doi.org/10.1016/S0003-3472(73)80065-X

Bartolomucci, A. (2007). Social stress, immune functions and disease in rodents. Frontiers in Neuroendocrinology, 28(1), 28-49. https://doi.org/10.1016/j.yfrne.2007.02.001

Bonier, F., Martin, P. R., Moore, I. T., & Wingfield, J. C. (2009). Do baseline glucocorticoids predict fitness? Trends in Ecology and Evolution, 24(11), 634-642. https://doi.org/10.1016/j.tree.2009.04.013

Bridgman, L. J., Innes, J., Gillies, C., Fitzgerald, N. B., Miller, S., & King, C. M. (2013). Do ship rats display predatory behaviour towards house mice? Animal Behaviour, 86(2), 257-268. https://doi.org/10.1016/j.anbehav.2013.05.013

Capizzi, D., Bertolino, S., & Mortelliti, A. (2014). Rating the rat: Global patterns and research priorities in impacts and management of rodent pests. Mammal Review, 44(2), 148-162. https://doi.org/10.1111/mam.12019

Carere, C., Groothuis, T. G. G., Möstl, E., Daan, S., & Koolhaas, J. M. (2003). Fecal corticosteroids in a territorial bird selected for different personalities: Daily rhythm and the response to social stress. Hormones and Behavior, 43(5), 540-548. https://doi.org/10.1016/S0018-506X(03)00065-5

Carere, C., Maestripieri, D., Cavigelli, S. A., Michael, K. C., & Ragan, C. M. (2014). Behavioral, Physiological, and Health Biases in Laboratory Rodents. In Claudio Carere & D. Maestripieri (Eds.), Animal Personalities (1st ed., pp. 441-498). https://doi.org/10.7208/chicago/9780226922065.003.0016

Casarrubea, M., Sorbera, F., & Crescimanno, G. (2009). Structure of rat behavior in hole-board: I) multivariate analysis of response to anxiety. Physiology and Behavior, 96(1), 174-179. https://doi.org/10.1016/j.physbeh.2008.09.025

Castro, J. E., Diessler, S., Varea, E., Márquez, C., Larsen, M. H., Cordero, M. I., & Sandi, C. (2012). Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology, 37(8), 1209-1223. https://doi.org/10.1016/j.psyneuen.2011.12.014

De Boer, S. F., & Koolhaas, J. M. (2003). Defensive burying in rodents: Ethology, neurobiology and psychopharmacology. European Journal of Pharmacology, 463, 145-161. https://doi.org/10.1016/S0014-2999(03)01278-0

Denenberg, V. H. (1969). Open-field behavior in the rat: What does it mean? Annals of the New York Academy of Sciences, 159(3), 852-859. https://doi.org/10.1111/j.1749-6632.1969.tb12983.x

Dunn, A. J., Guild, A. L., Kramarcy, N. R., & Ware, M. D. (1981). Benzodiazepines decrease grooming in response to novelty but not ACTH or β-endorphin. Pharmacology, Biochemistry and Behavior, 15(4), 605-608.

van Erp, A. M., Kruk, M. R., Meelis, W., & Willekens-Bramer, D. C. (1994). Effect of environmental stressors on time course, variability and form of self-grooming in the rat: handling, social contact, defeat, novelty, restraint and fur moistening. Behavioural Brain Research, 65, 47-55.

Foster, S., King, C., Patty, B., & Miller, S. (2011). Tree-climbing capabilities of Norway and ship rats. New Zealand Journal of Zoology, 38(4), 285-296. https://doi.org/10.1080/03014223.2011.599400

Fraňková, M., Kaftanová, B., Aulický, R., Rödl, P., Frynta, D., & Stejskal, V. (2019). Temporal production of coloured faeces in wild roof rats (Rattus rattus) following consumption of fluorescent non-toxic bait and a comparison with wild R. norvegicus and Mus musculus. Journal of Stored Products Research, 81, 7-10. https://doi.org/10.1016/j.jspr.2018.12.002

Fraňková, M., Palme, R., & Frynta, D. (2012). Family affairs and experimental male replacement affect fecal glucocorticoid metabolites levels in the Egyptian spiny mouse Acomys cahirinus. Zoological Studies, 51(3), 277-287.

Gentsch, C., Lichtsteiner, M., Driscoll, P., & Feer, H. (1982). Differential hormonal and physiological responses to stress in Roman high- and low-avoidance rats. Physiology and Behavior, 28(2), 259-263. https://doi.org/10.1016/0031-9384(82)90072-5

Guindre-Parker, S. (2018). The evolutionary endocrinology of circulating glucocorticoids in free-living vertebrates: Recent advances and future directions across scales of study. Integrative and Comparative Biology, 58(4), 814-825. https://doi.org/10.1093/icb/icy048

Harris, R. B. S., Gu, H., Mitchell, T. D., Endale, L., Russo, M., & Ryan, D. H. (2004). Increased glucocorticoid response to a novel stress in rats that have been restrained. Physiology and Behavior, 81(4), 557-568. https://doi.org/10.1016/j.physbeh.2004.01.017

Hegab, I. M., Shang, G., Ye, M., Jin, Y., Wang, A., Yin, B., Yang, S., & Wei, W. (2014). Defensive responses of Brandt's voles (Lasiopodomys brandtii) to chronic predatory stress. Physiology and Behavior, 126, 1-7. https://doi.org/10.1016/j.physbeh.2013.12.001

Hooks, M. S., & Kalivas, P. W. (1995). The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation. Neuroscience, 64(3), 587-597. https://doi.org/10.1016/0306-4522(94)00409-X

Hughes, R. N. (1997). Intrinsic exploration in animals: Motives and measurement. Behavioural Processes, 41, 213-226.

Kalueff, A. V., Keisala, T., Minasyan, A., Kumar, S. R., LaPorte, J. L., Murphy, D. L., & Tuohimaa, P. (2008). The regular and light-dark Suok tests of anxiety and sensorimotor integration: Utility for behavioral characterization in laboratory rodents. Nature Protocols, 3(1), 129-136. https://doi.org/10.1038/nprot.2007.516

Lapuz, R., Tani, H., Sasai, K., Shirota, K., Katoh, H., & Baba, E. (2008). The role of roof rats (Rattus rattus) in the spread of Salmonella enteritidis and S. infantis contamination in layer farms in eastern Japan. Epidemiology and Infection, 136(9), 1235-1243. https://doi.org/10.1017/S095026880700948X

Lendvai, Á. Z., Bókony, V., & Chastel, O. (2011). Coping with novelty and stress in free-living house sparrows. Journal of Experimental Biology, 214(5), 821-828. https://doi.org/10.1242/jeb.047712

Lendvai, Á. Z., Giraudeau, M., Bókony, V., Angelier, F., & Chastel, O. (2015). Within-individual plasticity explains age-related decrease in stress response in a short-lived bird. Biology Letters, 11, 20150272. https://doi.org/10.1098/rsbl.2015.0272

Lepschy, M., Touma, C., Hruby, R., & Palme, R. (2007). Non-invasive measurement of adrenocortical activity in male and female rats. Laboratory Animals, 41(3), 372-387. https://doi.org/10.1258/002367707781282730

Lepschy, M., Touma, C., & Palme, R. (2010). Faecal glucocorticoid metabolites: How to express yourself - Comparison of absolute amounts versus concentrations in samples from a study in laboratory rats. Laboratory Animals, 44(3), 192-198. https://doi.org/10.1258/la.2009.009082

Lever, C., Burton, S., & O'Keefe, J. (2006). Rearing on hind legs, environmental novelty, and the hippocampal formation. Reviews in the Neurosciences, 17(1-2), 111-133. https://doi.org/10.1515/REVNEURO.2006.17.1-2.111

Levine, S., Haltmeyer, G. C., Karas, G. G., & Denenberg, V. H. (1967). Physiological and behavioral effects of infantile stimulation. Physiology and Behavior, 2(1), 55-59. https://doi.org/10.1016/0031-9384(67)90011-X

Lynn, D. A., & Brown, G. R. (2009). The ontogeny of exploratory behavior in male and female adolescent rats (Rattus norvegicus). Developmental Psychobiology, 51(6), 513-520. https://doi.org/10.1002/dev.20386

MacDougall-Shackleton, S. A., Bonier, F., Romero, L. M., & Moore, I. T. (2019). Glucocorticoids and “stress” are not synonymous. Integrative Organismal Biology, 1(1), 1-8. https://doi.org/10.1093/iob/obz017

Madliger, C. L., & Love, O. P. (2016). Do baseline glucocorticoids simultaneously represent fitness and environmental quality in a declining aerial insectivore? Oikos, 125(12), 1824-1837. https://doi.org/10.1111/oik.03354

Martins, T. L. F., Roberts, M. L., Giblin, I., Huxham, R., & Evans, M. R. (2007). Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra finches. Hormones and Behavior, 52(4), 445-453. https://doi.org/10.1016/j.yhbeh.2007.06.007

Matthias, M. A., Ricaldi, J. N., Cespedes, M., Diaz, M. M., Galloway, R. L., Saito, M., Steigerwalt, A. G., Patra, K. P., Ore, C. V., Gotuzzo, E., Gilman, R. H., Levett, P. N., & Vinetz, J. M. (2008). Human leptospirosis caused by a new, antigenically unique Leptospira associated with a Rattus species reservoir in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2(4), e213. https://doi.org/10.1371/journal.pntd.0000213

McCormick, M. (2003). Rats, communications, and plague: Toward an ecological history. The Journal of Interdisciplinary History, 34(1), 1-25.

Meyer, N., Kröger, M., Thümmler, J., Tietze, L., Palme, R., & Touma, C. (2020). Impact of three commonly used blood sampling techniques on the welfare of laboratory mice: Taking the animal's perspective. PLoS One, 15(9), 1-23. https://doi.org/10.1371/journal.pone.0238895

Möstl, E., & Palme, R. (2002). Hormones as indicators of stress. Domestic Animal Endocrinology, 23(1-2), 67-74. https://doi.org/10.1016/S0739-7240(02)00146-7

Nitatpattana, N., Henrich, T., Palabodeewat, S., Tangkanakul, W., Poonsuksombat, D., Chauvancy, G., Barbazan, P., Yoksan, S., & Gonzalez, J. P. (2002). Hantaan virus antibody prevalence in rodent populations of several provinces of northeastern Thailand. Tropical Medicine and International Health, 7(10), 840-845. https://doi.org/10.1046/j.1365-3156.2002.00830.x

Nováková, M., Palme, R., Kutalová, H., Janský, L., & Frynta, D. (2008). The effects of sex, age and commensal way of life on levels of fecal glucocorticoid metabolites in spiny mice (Acomys cahirinus). Physiology & Behavior, 95, 187-193. https://doi.org/10.1016/j.physbeh.2008.05.017

Ossenkopp, K. P., Sorenson, L., & Mazmanian, D. S. (1994). Factor analysis of open-field behavior in the rat (Rattus norvegicus): Application of the three-way PARAFAC model to a longitudinal data set. Behavioural Processes, 31(2-3), 129-144. https://doi.org/10.1016/0376-6357(94)90001-9

Palme, R., Touma, C., Arias, N., Dominchin, M. F., & Lepschy, M. (2013). Steroid extraction: Get the best out of faecal samples. Wiener Tierärtzliche Monatsschrift, 100, 238-246.

Palme, R. (2019). Non-invasive measurement of glucocorticoids: Advances and problems. Physiology and Behavior, 199, 229-243. https://doi.org/10.1016/j.physbeh.2018.11.021

Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. European Journal of Pharmacology, 463(1-3), 3-33. https://doi.org/10.1016/S0014-2999(03)01272-X

Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews of the Cambridge Philosophical Society, 82(2), 291-318. https://doi.org/10.1111/j.1469-185X.2007.00010.x

Sangenstedt, S., Jaljuli, I., Sachser, N., & Kaiser, S. (2017). Stress responsiveness and anxiety-like behavior: The early social environment differentially shapes stability over time in a small rodent. Hormones and Behavior, 90, 90-97. https://doi.org/10.1016/j.yhbeh.2017.02.010

Schradin, C., Schneider, C., & Yuen, C. H. (2009). Age at puberty in male African striped mice: The impact of food, population density and the presence of the father. Functional Ecology, 23(5), 1004-1013. https://doi.org/10.1111/j.1365-2435.2009.01569.x

Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R., & Boonstra, R. (2011). Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia, 166, 869-887. https://doi.org/10.1007/s00442-011-1943-y

Smith, J. E., Monclús, R., Wantuck, D., Florant, G. L., & Blumstein, D. T. (2012). Fecal glucocorticoid metabolites in wild yellow-bellied marmots: Experimental validation, individual differences and ecological correlates. General and Comparative Endocrinology, 178(2), 417-426. https://doi.org/10.1016/j.ygcen.2012.06.015

Spruijt, B. M., & Gispen, W. H. (1986). ACTH and grooming, Central actions of ACTH and related peptides (Vol. 4, pp. 179-187). Liviana Press and Springer-Verlag.

Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution, 8(11), 1639-1644. https://doi.org/10.1111/2041-210X.12797

Stöwe, M., Rosivall, B., Drent, P. J., & Möstl, E. (2010). Selection for fast and slow exploration affects baseline and stress-induced corticosterone excretion in Great tit nestlings, Parus major. Hormones and Behavior, 58(5), 864-871. https://doi.org/10.1016/j.yhbeh.2010.08.011

Taff, C. C., & Vitousek, M. N. (2016). Endocrine flexibility: Optimizing phenotypes in a dynamic world? Trends in Ecology and Evolution, 31(6), 476-488. https://doi.org/10.1016/j.tree.2016.03.005

Takeda, H., Tsuji, M., & Matsumiya, T. (1998). Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. European Journal of Pharmacology, 350, 21-29. https://doi.org/10.1016/S0014-2999(98)00223-4

Touma, C., & Palme, R. (2005). Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Annals of the New York Academy of Sciences, 1046, 54-74. https://doi.org/10.1196/annals.1343.006

Touma, C., Palme, R., & Sachser, N. (2004). Analyzing corticosterone metabolites in fecal samples of mice: A noninvasive technique to monitor stress hormones. Hormones and Behavior, 45(1), 10-22. https://doi.org/10.1016/j.yhbeh.2003.07.002

Touma, C., Sachser, N., Möstl, E., & Palme, R. (2003). Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. General and Comparative Endocrinology, 130(3), 267-278. https://doi.org/10.1016/S0016-6480(02)00620-2

Towns, D. R., Atkinson, I. A. E., & Daugherty, C. H. (2006). Have the harmful effects of introduced rats on islands been exaggerated? Biological Invasions, 8(4), 863-891. https://doi.org/10.1007/s10530-005-0421-z

Veenema, A. H., Cremers, T. I. F. H., Jongsma, M. E., Steenbergen, P. J., De Boer, S. F., & Koolhaas, J. M. (2005). Differences in the effects of 5-HT1A receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice. Psychopharmacology, 178(2-3), 151-160. https://doi.org/10.1007/s00213-004-2005-5

Veenema, A. H., Koolhaas, J. M., & De Kloet, E. R. (2004). Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines. Annals of the New York Academy of Sciences, 1018, 255-265. https://doi.org/10.1196/annals.1296.030

Vrba, I., & Donát, P. (1993). Activities version 2.1.

Žampachová, B., Kaftanová, B., Šimánková, H., Landová, E., & Frynta, D. (2017). Consistent individual differences in standard exploration tasks in the black rat (Rattus rattus). Journal of Comparative Psychology, 131(2), 150-162. https://doi.org/10.1037/com0000070

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

How to explore a new environment: exploratory tactics of the black rat (Rattus rattus)

. 2024 Jun ; 70 (3) : 371-382. [epub] 20240404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...