Targeting B cells to modify MS, NMOSD, and MOGAD: Part 2
Language English Country United States Media electronic-print
Document type Journal Article, Review
Grant support
R01 AI131624
NIAID NIH HHS - United States
PubMed
33411674
PubMed Central
PMC8063618
DOI
10.1212/nxi.0000000000000919
PII: 8/1/e919
Knihovny.cz E-resources
- MeSH
- Aquaporin 4 MeSH
- B-Lymphocytes MeSH
- COVID-19 * MeSH
- Humans MeSH
- Neuromyelitis Optica * drug therapy MeSH
- SARS-CoV-2 MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Aquaporin 4 MeSH
Ocrelizumab, rituximab, ofatumumab, ublituximab, inebilizumab, and evobrutinib are immunotherapies that target various B cell-related proteins. Most of these treatments have proven efficacy in relapsing and progressive forms of MS and neuromyelitis optica spectrum disease (NMOSD) or are in advanced stages of clinical development. Currently, ocrelizumab and inebilizumab are licensed for treatment of MS and NMOSD, respectively. This part of the review focuses on monoclonal antibody B cell-depleting strategies in NMOSD and the emerging related myelin oligodendrocyte glycoprotein (MOG) immunoglobulin G-associated disease (MOGAD). Case series and phase 2/3 studies in these inflammatory disorders are assessed. The safety profile of long-term B-cell depletion in MS, NMOSD, and MOGAD will be highlighted. Finally implications of the current coronavirus disease 2019 pandemic on the management of patients with these disorders and the use of B cell-depleting agents will be discussed.
See more in PubMed
Fujihara K, Cook LJ. Neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease: current topics. Curr Opin Neurol 2020;33:300–308. PubMed
Bennett JL, O'Connor KC, Bar-Or A, et al. . B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2015;2:e104. doi: 10.1212/NXI.0000000000000104. PubMed DOI PMC
Cotzomi E, Stathopoulos P, Lee CS, et al. . Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 2019;142:1598–1615. PubMed PMC
Mader S, Kümpfel T, Meinl E. Novel insights into pathophysiology and therapeutic possibilities reveal further differences between AQP4-IgG- and MOG-IgG-associated diseases. Curr Opin Neurol 2020;33:362–371. PubMed
Damato V, Evoli A, Iorio R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol 2016;73:1342–1348. PubMed
Gao F, Chai B, Gu C, et al. . Effectiveness of rituximab in neuromyelitis optica: a meta-analysis. BMC Neurol 2019;19:36. PubMed PMC
Annovazzi P, Capobianco M, Moiola L, et al. . Rituximab in the treatment of neuromyelitis optica: a multicentre Italian observational study. J Neurol 2016;263:1727–1735. PubMed
Trebst C, Jarius S, Berthele A, et al. . Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2014;261:1–16. PubMed PMC
Cabre P, Mejdoubi M, Jeannin S, et al. . Treatment of neuromyelitis optica with rituximab: a 2-year prospective multicenter study. J Neurol 2018;265:917–925. PubMed
Radaelli M, Moiola L, Sangalli F, et al. . Neuromyelitis optica spectrum disorders: long-term safety and efficacy of rituximab in Caucasian patients. Mult Scler 2016;22:511–519. PubMed
Chamberlain N, Massad C, Oe T, Cantaert T, Herold KC, Meffre E. Rituximab does not reset defective early B cell tolerance checkpoints. J Clin Invest 2016;126:282–287. PubMed PMC
Kim SH, Huh SY, Lee SJ, Joung A, Kim HJ. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol 2013;70:1110–1117. PubMed
Kim SH, Hyun JW, Kim HJ. Individualized B cell-targeting therapy for neuromyelitis optica spectrum disorder. Neurochem Int 2019;130:104347. PubMed
Cohen M, Romero G, Bas J, et al. . Monitoring CD27+ memory B-cells in neuromyelitis optica spectrum disorders patients treated with rituximab: results from a bicentric study. J Neurol Sci 2017;373:335–338. PubMed
Evangelopoulos ME, Andreadou E, Koutsis G, et al. . Treatment of neuromyelitis optica and neuromyelitis optica spectrum disorders with rituximab using a maintenance treatment regimen and close CD19 B cell monitoring. A six-year follow-up. J Neurol Sci 2017;372:92–96. PubMed
Novi G, Bovis F, Capobianco M, et al. . Efficacy of different rituximab therapeutic strategies in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2019;36:101430. PubMed
Paolilo RB, Hacohen Y, Yazbeck E, et al. . Treatment and outcome of aquaporin-4 antibody-positive NMOSD: a multinational pediatric study. Neurol Neuroimmunol Neuroinflamm 2020;7:e387. doi: 10.1212/NXI.0000000000000104. PubMed DOI PMC
Tahara M, Oeda T, Okada K, et al. . Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020;19:298–306. PubMed
Hartung HP, Aktas O. Old and new breakthroughs in neuromyelitis optica. Lancet Neurol 2020;19:280–281. PubMed
Trewin BP, Adelstein S, Spies JM, et al. . Precision therapy for neuromyelitis optica spectrum disorder: a retrospective analysis of the use of class-switched memory B-cells for individualised rituximab dosing schedules. Mult Scler Relat Disord 2020;43:102175. PubMed
Herbst R, Wang Y, Gallagher S, et al. . B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 2010;335:213–222. PubMed
Ward E, Mittereder N, Kuta E, et al. . A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol 2011;155:426–437. PubMed
Chen D, Gallagher S, Monson NL, Herbst R, Wang Y. Inebilizumab, a B Cell-Depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. J Clin Med 2016;5:107. PubMed PMC
Agius MA, Klodowska-Duda G, Maciejowski M, et al. . Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult Scler 2019;25:235–245. PubMed PMC
Cree BAC, Bennett JL, Kim HJ, et al. . Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019;394:1352–1363. PubMed
Gallagher S, Turman S, Yusuf I, et al. . Pharmacological profile of MEDI-551, a novel anti-CD19 antibody, in human CD19 transgenic mice. Int Immunopharmacol 2016;36:205–212. PubMed
Stüve O, Warnke C, Deason K, et al. . CD19 as a molecular target in CNS autoimmunity. Acta Neuropathol 2014;128:177–190. PubMed PMC
Mealy MA, Levy M. A pilot safety study of ublituximab, a monoclonal antibody against CD20, in acute relapses of neuromyelitis optica spectrum disorder. Medicine (Baltimore) 2019;98:e15944. PubMed PMC
Traboulsee A, Greenberg BM, Bennett JL, et al. . Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 2020;19:402–412. PubMed PMC
Zhang C, Zhang M, Qiu W, et al. . Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol 2020;19:391–401. PubMed PMC
Bennett JL, Greenberg B, Traboulsee A, et al. . Efficacy of satralizumab as monotherapy in pre-specified subgroups of sakurastar, a double-blind placebo-controlled phase 3 clinical study in patients with neuromyelitis optica spectrum disorder (NMOSD). Mult Scler Relat Disord 2020;37:101576.
Jarius S, Ruprecht K, Kleiter I, et al. . MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016;13:280. PubMed PMC
Papathanasiou A, Tanasescu R, Davis J, et al. . MOG-IgG-associated demyelination: focus on atypical features, brain histopathology and concomitant autoimmunity. J Neurol 2020;267:359–368. PubMed
Höftberger R, Guo Y, Flanagan EP, et al. . The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol 2020;139:875–892. PubMed PMC
Jurynczyk M, Messina S, Woodhall MR, et al. . Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 2017;140:3128–3138. PubMed
Takai Y, Misu T, Kaneko K, et al. . Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain 2020;143:1431–1446. PubMed
Ciotti JR, Eby NS, Wu GF, Naismith RT, Chahin S, Cross AH. Clinical and laboratory features distinguishing MOG antibody disease from multiple sclerosis and AQP4 antibody-positive neuromyelitis optica. Mult Scler Relat Disord 2020;45:102399. PubMed
Spadaro M, Winklmeier S, Beltrán E, et al. . Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein. Ann Neurol 2018;84:315–328. PubMed
Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol 2019;15:89–102. PubMed
Peschl P, Bradl M, Höftberger R, Berger T, Reindl M. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol 2017;8:529. PubMed PMC
Winklmeier S, Schlüter M, Spadaro M, et al. . Identification of circulating MOG-specific B cells in patients with MOG antibodies. Neurol Neuroimmunol Neuroinflamm 2019;6:625. doi: 10.1212/NXI.0000000000000104. PubMed DOI PMC
Li X, Wang L, Zhou L, et al. . The imbalance between regulatory and memory B cells accompanied by an increased number of circulating T-follicular helper cells in MOG-antibody-associated demyelination. Mult Scler Relat Disord 2019;36:101397. PubMed
Hacohen Y, Wong YY, Lechner C, et al. . Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol 2018;75:478–487. PubMed PMC
Durozard P, Rico A, Boutiere C, et al. . Comparison of the response to rituximab between myelin oligodendrocyte glycoprotein and aquaporin-4 antibody diseases. Ann Neurol 2020;87:256–266. PubMed
Whittam DH, Cobo-Calvo A, Lopez-Chiriboga AS, et al. . Treatment of MOG-IgG-associated disorder with rituximab: an international study of 121 patients. Mult Scler Relat Disord 2020;44:102251. PubMed PMC
Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 2016;12:217–233. PubMed
Salzer J, Svenningsson R, Alping P, et al. . Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology 2016;87:2074–2081. PubMed PMC
Vollmer BL, Wallach AI, Corboy JR, Dubovskaya K, Alvarez E, Kister I. Serious safety events in rituximab-treated multiple sclerosis and related disorders. Ann Clin Transl Neurol 2020;7:1477–1487. PubMed PMC
Luna G, Alping P, Burman J, et al. . Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol 2020;77:184–191. PubMed PMC
Airas L, Nylund M, Mannonen I, Matilainen M, Sucksdorff M, Rissanen E. Rituximab in the treatment of multiple sclerosis in the hospital district of southwest Finland. Mult Scler Relat Disord 2020;40:101980. PubMed
Caldito NG, Shirani A, Salter A, Stuve O. Adverse event profile differences between rituximab and ocrelizumab: findings from the FDA adverse event reporting database. Mult Scler 2020. doi: 10.1177/1352458520949986. PubMed
Alping P, Askling J, Burman J, et al. . Cancer risk for fingolimod, natalizumab, and rituximab in multiple sclerosis patients. Ann Neurol 2020;87:688–699. PubMed
van Vollenhoven RF, Fleischmann RM, Furst DE, Lacey S, Lehane PB. Longterm safety of rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J Rheumatol 2015;42:1761–1766. PubMed
Ng HS, Rosenbult CL, Tremlett H. Safety profile of ocrelizumab for the treatment of multiple sclerosis: a systematic review. Expert Opin Drug Saf 2020;19:1069–1094. PubMed
Hauser SL, Kappos L, Arnold DL, et al. . Five-years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology 2020;95:e1854–e1867. PubMed PMC
Hauser SL, Kappos L, Montalban X, et al. . Safety of ocrelizumab in multiple sclerosis: updated analysis in patients with relapsing and primary progressive multiple sclerosis. Presented at the 70th American Academy of Neurology (AAN) Annual Meeting; April 21–27, 2018; Los Angeles, CA, USA; Platform presentation number S36.001 [online]. Available at: ocreposters.com/uploads/AAN%202018%20General%20Safety_Platform_Global_Hauser%20et%20al_Updated.pdf. Accessed June 15, 2020.
Montalban X, Hauser SL, Kappos L, et al. . Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 2017;376:209–220. PubMed
Hauser SL, Kappos L, Montalban X, et al. . Safety of ocrelizumab in multiple sclerosis: updated analysis in patients with relapsing and primary progressive multiple sclerosis. Presented at the 6th Congress of the European Academy of Neurology (EAN) [online]. Available at: medically.roche.com/en/search/pdfviewer.ed54f34c-1b9b-461a-82ed-dac932793643.html?cid=slpsxx2005nexxean2020. Accessed June 15, 2020.
Ciardi MR, Iannetta M, Zingaropoli MA, et al. . Reactivation of hepatitis B virus with immune-escape mutations after ocrelizumab treatment for multiple sclerosis. Open Forum Infect Dis 2019;6:ofy356. PubMed PMC
Nicolini LA, Canepa P, Caligiuri P, et al. . Fulminant hepatitis associated with echovirus 25 during treatment with ocrelizumab for multiple sclerosis. JAMA Neurol 2019;76:866–867. PubMed PMC
Additional e-references (e1-e37) available at: links.lww.com/NXI/A347.
B cell targeted therapies in inflammatory autoimmune disease of the central nervous system