Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons

. 2021 Jan 07 ; 22 (1) : 36. [epub] 20210107

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33413102

Grantová podpora
339092 European Research Council - International
339092 European Research Council ()
239974 Norges Forskningsråd (NO)
223257 Norges Forskningsråd

Odkazy

PubMed 33413102
PubMed Central PMC7792223
DOI 10.1186/s12864-020-07329-9
PII: 10.1186/s12864-020-07329-9
Knihovny.cz E-zdroje

BACKGROUND: DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. RESULTS: We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. CONCLUSION: Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.

Zobrazit více v PubMed

Pigliucci M. Phenotypic plasticity: beyond nature and nurture. Baltimore: John Hopkins University Press; 2001.

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21. doi: 10.1101/gad.947102. PubMed DOI

Liu L, Wylie RC, Andrews LG, Tollefsbol TO. Aging, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev. 2003;124:989–998. doi: 10.1016/j.mad.2003.08.001. PubMed DOI

Bind M, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, et al. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology. 2012;23:332–340. doi: 10.1097/EDE.0b013e31824523f0. PubMed DOI PMC

Stevenson TJ, Prendergast BJ. Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Natl Acad Sci U S A. 2013;110:16651–16656. doi: 10.1073/pnas.1310643110. PubMed DOI PMC

Viitaniemi HM, Verhagen I, Visser ME, Honkela A, van Oers K, Husby A. Seasonal variation in genome-wide DNA methylation patterns and the onset of seasonal timing of reproduction in great tits. Genome Biol Evol. 2019;11:970–983. doi: 10.1093/gbe/evz044. PubMed DOI PMC

Sepers B, van den Heuvel K, Lindner M, Viitaniemi HM, Husby A, van Oers K. Avian ecological epigenetics: pitfalls and promises. J Ornithol. 2019;160:1183–1203.

Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010;20:332–340. doi: 10.1101/gr.096826.109. PubMed DOI PMC

Slieker RC, Relton CL, Gaunt TR, Slagboom PE, Heijmans BT. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin. 2018;11:25. doi: 10.1186/s13072-018-0191-3. PubMed DOI PMC

Kang SW, Madkour M, Kuenzel WJ. Tissue-specific expression of DNA methyltransferases involved in early-life nutritional stress of chicken, Gallus gallus. Front Genet. 2017;8:204. doi: 10.3389/fgene.2017.00204. PubMed DOI PMC

Alvarado S, Mak T, Liu S, Storey KB, Szyf M. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus. J Exp Biol. 2015;218:1787–1795. doi: 10.1242/jeb.116046. PubMed DOI

Pegoraro M, Bafna A, Davies NJ, Shuker DM, Tauber E. DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res. 2016;26:203–210. doi: 10.1101/gr.196204.115. PubMed DOI PMC

Cortijo S, Wardenaar R, Colome-Tatche M, Gilly A, Etcheverry M, Labadie K, et al. Mapping the epigenetic basis of complex traits. Science. 2014;343:1145–1148. doi: 10.1126/science.1248127. PubMed DOI

Wilschut RA, Oplaat C, Snoek LB, Kirschner J, Verhoeven KJF. Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage. Mol Ecol. 2016;25:1759–1768. doi: 10.1111/mec.13502. PubMed DOI

Verhulst EC, Mateman AC, Zwier MV, Caro SP, Verhoeven KJF, van Oers K. Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Mol Ecol. 2016;25:1801–1811. doi: 10.1111/mec.13519. PubMed DOI

Mäkinen H, Viitaniemi HM, Visser ME, Verhagen I, van Oers K, Husby A. Temporally replicated DNA methylation patterns in great tit using reduced representation bisulfite sequencing. Sci Data. 2019;6:136. doi: 10.1038/s41597-019-0136-0. PubMed DOI PMC

Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33:5868–5877. doi: 10.1093/nar/gki901. PubMed DOI PMC

Lindner M, Laine VN, Verhagen I, Viitaniemi HM, Visser ME, van Oers K, et al. Epigenetic mediation of the onset of reproduction in a songbird. bioRxiv. 2020;2020.02.01.929968.

Williams TD. Physiological adaptations for breeding in birds. 2012.

McKay JA, Xie L, Harris S, Wong YK, Ford D, Mathers JC. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice. Mol Nutr Food Res. 2011;55:1026–1035. doi: 10.1002/mnfr.201100008. PubMed DOI

Derks MFL, Schachtschneider KM, Madsen O, Schijlen E, Verhoeven KJF, van Oers K. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics. 2016;17:332. doi: 10.1186/s12864-016-2653-y. PubMed DOI PMC

Laine VN, Verhagen I, Mateman AC, Pijl A, Williams TD, Gienapp P, et al. Exploration of tissue-specific gene expression patterns underlying timing of breeding in contrasting temperature environments in a song bird. BMC Genomics. 2019;20:693. doi: 10.1186/s12864-019-6043-0. PubMed DOI PMC

Husby A. On the use of blood samples for measuring DNA methylation in ecological epigenetic studies. Integr Comp Biol. 2020;60:1558–66. PubMed PMC

Laine VN, Gossmann TI, Schachtschneider KM, Garroway CJ, Madsen O, Verhoeven KJFF, et al. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat Commun. 2016;7:10474. doi: 10.1038/ncomms10474. PubMed DOI PMC

Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15:3248. doi: 10.1186/gb-2014-15-4-r54. PubMed DOI PMC

Wang J, Duan Y, Meng Q, Gong R, Guo C, Zhao Y, et al. Integrated analysis of DNA methylation profiling and gene expression profiling identifies novel markers in lung cancer in Xuanwei, China. PLoS One. 2018;13:e0203155. doi: 10.1371/journal.pone.0203155. PubMed DOI PMC

Xie F, Deng F, Wu L, Mo X, Zhu H, Wu J, et al. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells. Funct Integr Genomics. 2018;18:1–10. doi: 10.1007/s10142-017-0568-6. PubMed DOI

Zhu T, Zheng SC, Paul DS, Horvath S, Teschendorff AE. Cell and tissue type independent age-associated DNA methylation changes are not rare but common. Aging (Albany NY) 2018;10:3541–3557. doi: 10.18632/aging.101666. PubMed DOI PMC

Smith AK, Kilaru V, Klengel T, Mercer KB, Bradley B, Conneely KN, et al. DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain. Am J Med Genet B Neuropsychiatr Genet. 2015;168B:36–44. doi: 10.1002/ajmg.b.32278. PubMed DOI PMC

Dmitrijeva M, Ossowski S, Serrano L, Schaefer MH. Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res. 2018;46:7022–7039. doi: 10.1093/nar/gky498. PubMed DOI PMC

Klengel T, Binder EB. Epigenetics of stress-related psychiatric disorders and gene x environment interactions. Neuron. 2015;86:1343–1357. doi: 10.1016/j.neuron.2015.05.036. PubMed DOI

John S, Sabo PJ, Thurman RE, Sung M, Biddie SC, Johnson TA, et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011;43:264. doi: 10.1038/ng.759. PubMed DOI PMC

Ewald ER, Wand GS, Seifuddin F, Yang X, Tamashiro KL, Potash JB, et al. Alterations in DNA methylation of Fkbp5 as a determinant of blood-brain correlation of glucocorticoid exposure. Psychoneuroendocrinology. 2014;44:112–122. doi: 10.1016/j.psyneuen.2014.03.003. PubMed DOI PMC

Zhang B, Zhou Y, Lin N, Lowdon RF, Hong C, Nagarajan RP, et al. Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res. 2013;23:1522–1540. doi: 10.1101/gr.156539.113. PubMed DOI PMC

Campbell DEK, Langlois VS. Thyroid hormones and androgens di ff erentially regulate gene expression in testes and ovaries of sexually mature Silurana tropicalis. Gen Comp Endocrinol. 2018;267:172–182. doi: 10.1016/j.ygcen.2018.07.001. PubMed DOI

Kassam I, Wu Y, Yang J, Visscher PM, AF MR. Tissue-specific sex-differences in human gene expression. Hum Mol Genet. 2019;28:2976–86. PubMed PMC

Miragaia RJ, Gomes T, Chomka A, Jardine L, Riedel A, Hegazy AN, et al. Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity. 2019;50:493–504. doi: 10.1016/j.immuni.2019.01.001. PubMed DOI PMC

Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13:R43. doi: 10.1186/gb-2012-13-6-r43. PubMed DOI PMC

Verhagen I, Laine VN, Mateman AC, Pijl A, de Wit R, van Lith B, et al. Fine-tuning of seasonal timing of breeding is regulated downstream in the underlying neuro-endocrine system in a small songbird. J Exp Biol. 2019;222:jeb.202481. doi: 10.1242/jeb.202481. PubMed DOI

Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–1022. doi: 10.1101/gad.2037511. PubMed DOI PMC

Höglund A, Henriksen R, Fogelholm J, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, et al. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat Ecol Evol. 2020;4:1713–24. PubMed

Gienapp PG, Calus MPL, Laine VN, Visser ME. Genomic selection on breeding time in a wild bird population. Evol Lett. 2019:3:142–51. PubMed PMC

Verhagen I, Gienapp P, Laine VN, van Grevenhof EM, Mateman AC, van Oers K, et al. Genetic and phenotypic responses to genomic selection for timing of breeding in a wild songbird. Funct Ecol. 2019;33:1708–21.

Visser ME, Schaper SV, Holleman LJM, Dawson A, Sharp P, Gienapp P, et al. Genetic variation in cue sensitivity involved in avian timing of reproduction. Funct Ecol. 2011;25:868–877. doi: 10.1111/j.1365-2435.2011.01844.x. DOI

Silverin B, Massa R, Stokkan KA. Photoperiodic adaptation to breeding at different latitudes in great tits. Gen Comp Endocrinol. 1993;90:14–22. doi: 10.1006/gcen.1993.1055. PubMed DOI

Boyle P, Clement K, Gu H, Smith ZD, Ziller M, Fostel JL, et al. Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling. Genome Biol. 2012;13. PubMed PMC

Andrews S. FastQC: a quality control tool for high throughput sequence data. 2016.

Krueger F. TrimGalore! 2016.

Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9. PubMed PMC

Lawrence M, Gentleman R, Carey V. Rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25:1841–1842. doi: 10.1093/bioinformatics/btp328. PubMed DOI PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87. doi: 10.1186/gb-2012-13-10-r87. PubMed DOI PMC

Gaudet P, Dessimoz C. In: Gene ontology: pitfalls, biases, and remedies BT - the gene ontology handbook. Dessimoz C, Škunca N, editors. New York: Springer New York; 2017. pp. 189–205. PubMed

Primmer CR, Papakostas S, Leder EH, Davis MJ, Ragan MA. Annotated genes and nonannotated genomes: cross-species use of gene ontology in ecology and evolution research. Mol Ecol. 2013;22:3216–3241. doi: 10.1111/mec.12309. PubMed DOI

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC

Rivals I, Personnaz L, Taing L, Potier M. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics. 2007;23:401–407. doi: 10.1093/bioinformatics/btl633. PubMed DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace