Changes in Volatile Compound Profiles in Cold-Pressed Oils Obtained from Various Seeds during Accelerated Storage
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2012/07/B/NZ9/01634
Narodowym Centrum Nauki
PubMed
33430033
PubMed Central
PMC7827483
DOI
10.3390/molecules26020285
PII: molecules26020285
Knihovny.cz E-zdroje
- Klíčová slova
- GC-HRToFMS, cold-pressed oil, multivariate analysis, volatile compounds,
- MeSH
- antioxidancia chemie MeSH
- oleje rostlin chemie MeSH
- semena rostlinná chemie MeSH
- těkavé organické sloučeniny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- oleje rostlin MeSH
- těkavé organické sloučeniny MeSH
Cold-pressed oils are highly valuable sources of unsaturated fatty acids which are prone to oxidation processes, resulting in the formation of lipid oxidation products, which may deteriorate the sensory quality of the produced oil. The aim of the study was to determine the main volatile compounds which differentiate examined oils and could be used as the markers of lipid oxidation in various oils. In the experiment, cold-pressed oils-brown flaxseed, golden flaxseed, hempseed, milk thistle, black cumin, pumpkin, white poppy seed, blue poppy seed, white sesame, black sesame and argan oils from raw and roasted kernels-were analyzed. To induce oxidative changes, an accelerate storage test was performed, and oils were kept at 60 °C for 0, 2, 4, 7 and 10 days. Volatile compound profiling was performed using SPME-GC-HRToFMS. Additionally, basic measurements such as fatty acid composition, peroxide value, scavenging activity and phenolic compound contents were carried out. Multivariate statistical analyses with volatile compound profiling allow us to differentiate oils in terms of plant variety, oxidation level and seed treatment before pressing. Comparing black cumin cold-pressed oil with other oils, significant differences in volatile compound profiles and scavenging activity were observed. Compounds that may serve as indicators of undergoing oxidation processes in flaxseed, poppy seed, milk thistle and hemp oils were determined.
Faculty of Forestry and Wood Sciences Czech University of Life Sciences 165 00 Prague Czech Republic
Zobrazit více v PubMed
Gunstone F.D., Harwood J.L., Padley F.B. The Lipid Handbook. 2nd ed. CRC Press; Boca Raton, FL, USA: 1994.
Ramadan M.F. Healthy blends of high linoleic sunflower oil with selected cold pressed oils: Functionality, stability and antioxidative characteristics. Ind. Crops Prod. 2013;43:65–72. doi: 10.1016/j.indcrop.2012.07.013. DOI
Wei C.Q., Liu W.Y., Xi W.P., Cao D., Zhang H.J., Ding M., Chen L., Xu Y.Y., Huang K.X. Comparison of volatile compounds of hot-pressed, cold-pressed and solvent-extracted flaxseed oils analyzed by SPME-GC/MS combined with electronic nose: Major volatiles can be used as markers to distinguish differently processed oils: Volatile compounds of different processed flaxseed oils. Eur. J. Lipid Sci. Technol. 2015;117:320–330. doi: 10.1002/ejlt.201400244. DOI
Matthäus B., Brühl L. Quality of cold-pressed edible rapeseed oil in Germany. Food/Nahrung. 2003;47:413–419. doi: 10.1002/food.200390092. PubMed DOI
Kiralan M., Çalik G., Kiralan S., Ramadan M.F. Monitoring stability and volatile oxidation compounds of cold-pressed flax seed, grape seed and black cumin seed oils upon photo-oxidation. J. Food Meas. Charact. 2018;12:616–621. doi: 10.1007/s11694-017-9674-3. DOI
Frankel E.N. Lipid Oxidation: Mechanisms, Products and Biological Significance. J. Agric. Food Chem. 1984;61:1908–1917. doi: 10.1007/BF02540830. DOI
Choe E., Min D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006;5:169–186. doi: 10.1111/j.1541-4337.2006.00009.x. DOI
Prescha A., Grajzer M., Dedyk M., Grajeta H. The Antioxidant Activity and Oxidative Stability of Cold-Pressed Oils. J. Am. Oil Chem. Soc. 2014;91:1291–1301. doi: 10.1007/s11746-014-2479-1. PubMed DOI PMC
Azarbad M.H., Jeleń H. Determination of hexanal—An indicator of lipid oxidation by static headspace gas chromatography (SHS-GC) in fat-rich food matrices. Food Anal. Methods. 2015;8:1727–1733. doi: 10.1007/s12161-014-0043-0. DOI
Kalua C.M., Allen M.S., Bedgood D.R., Bishop A.G., Prenzler P.D., Robards K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007;100:273–286. doi: 10.1016/j.foodchem.2005.09.059. DOI
Bicchi C., Cordero C., Liberto E., Sgorbini B., Rubiolo P. Headspace sampling of the volatile fraction of vegetable matrices. J. Chromatogr. A. 2008;1184:220–233. doi: 10.1016/j.chroma.2007.06.019. PubMed DOI
Cavalli J.-F., Fernandez X., Lizzani-Cuvelier L., Loiseau A.-M. Comparison of Static Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils. J. Agric. Food Chem. 2003;51:7709–7716. doi: 10.1021/jf034834n. PubMed DOI
Havemose M.S., Justesen P., Bredie W.L.P., Nielsen J.H. Measurement of volatile oxidation products from milk using solvent-assisted flavour evaporation and solid phase microextraction. Int. Dairy J. 2007;17:746–752. doi: 10.1016/j.idairyj.2006.09.008. DOI
Lee J., Kim D., Chang P., Lee J. Headspace-solid phase microextraction (HS-SPME) analysis of oxidized volatiles from free fatty acids (FFA) and application for measuring hydrogen donating antioxidant activity. Food Chem. 2007;105:414–420. doi: 10.1016/j.foodchem.2006.12.059. DOI
Jeleń H. Solid phase microextraction in the analysis of food taints and off-flavors. J. Sep. Sci. 2006;44:399–415. PubMed
Cordero C., Kiefl J., Schieberle P., Reichenbach S.E., Bicchi C. Comprehensive two-dimensional gas chromatography and food sensory properties: Potential and challenges. Anal. Bioanal. Chem. 2015;407:169–191. doi: 10.1007/s00216-014-8248-z. PubMed DOI
Andujar-Ortiz T.L., Peppard G. The Chemical Sensory Informatics of Food: Measurement, Analysis, Integration. Volume 1191. American Chemical Society; Washington, DC, USA: 2015. Reineccius Flavoromics for Determining Markers of Cooked and Fermented Flavor in Strawberry Juices; pp. 293–312. (ACS Symposium Series).
Pollner G., Schieberle P. Characterization of the Key Odorants in Commercial Cold-Pressed Oils from Unpeeled and Peeled Rapeseeds by the Sensomics Approach. J. Agric. Food Chem. 2016;64:627–636. doi: 10.1021/acs.jafc.5b05321. PubMed DOI
Gracka A., Jeleń H.H., Majcher M., Siger A., Kaczmarek A. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting. J. Chromatogr. A. 2016;1428:304. doi: 10.1016/j.chroma.2015.10.088. PubMed DOI
Nicolotti L., Cordero C., Bicchi C., Rubiolo P., Sgorbini B., Liberto E. Volatile profiling of high quality hazelnuts (Corylus avellana L.): Chemical indices of roasting. Food Chem. 2013;138:1723–1733. doi: 10.1016/j.foodchem.2012.11.086. PubMed DOI
Purcaro G., Cordero C., Liberto E., Bicchi C., Conte L.S. Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 2014;1334:101–111. doi: 10.1016/j.chroma.2014.01.067. PubMed DOI
Gracka A., Majcher M., Kludská E., Hradecký J., Hajšlová J., Jeleń H.H. Storage-Induced Changes in Volatile Compounds in Argan Oils Obtained from Raw and Roasted Kernels. J. Am. Oil Chem. Soc. 2018;95:1475–1485. doi: 10.1002/aocs.12148. DOI
Codex Alimentarius Commission . Codex Alimentarius: Fats, Oils and Related Products. Food & Agriculture Organization; Rome, Italy: 2013.
Dimić E., Romanić R., Vujasinović V. Essential fatty acids, nutritive value and oxidative stability of cold pressed hempseed (Cannabis sativa L.) oil from different varieties. Acta Aliment. 2009;38:229–236. doi: 10.1556/AAlim.2008.0035. DOI
Teh S.-S., Birch J. Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils. J. Food Compos. Anal. 2013;30:26–31. doi: 10.1016/j.jfca.2013.01.004. DOI
Kiralan M., Çalik G., Kiralan S., Özaydin A., Özkan G., Ramadan M.F. Stability and volatile oxidation compounds of grape seed, flax seed and black cumin seed cold-pressed oils as affected by thermal oxidation. Grasas y Aceites. 2019;70:295. doi: 10.3989/gya.0570181. DOI
Kiralan M., Özkan G., Bayrak A., Ramadan M.F. Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Ind. Crops Prod. 2014;57:52–58. doi: 10.1016/j.indcrop.2014.03.026. DOI
Meddeb W., Rezig L., Abderrabba M., Lizard G., Mejri M. Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils. Int. J. Mol. Sci. 2017;18:2582. doi: 10.3390/ijms18122582. PubMed DOI PMC
Parry J., Hao Z., Luther M., Su L., Zhou K., Yu L. Characterization of Cold-Pressed Onion, Parsley, Cardamom, Mullein, Roasted Pumpkin, and Milk Thistle Seed Oils. J. Am. Oil Chem. Soc. 2007;84:613. doi: 10.1007/s11746-007-1076-y. DOI
Smeriglio A., Galati E.M., Monforte M.T., Lanuzza F., D’Angelo V., Circosta C. Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L.: Polyphenolic Compounds and Antioxidant Activity of FHSO. Phytother. Res. 2016;30:1298–1307. doi: 10.1002/ptr.5623. PubMed DOI
Ayerza R. Seed composition of two chia (Salvia hispanica L.) genotypes which differ in seed color. Emir. J. Food Agric. 2013;25 doi: 10.9755/ejfa.v25i7.13569. DOI
Emir D.D., Güneșer O., Yılmaz E. Cold pressed poppy seed oils: Sensory properties, aromatic profiles and consumer preferences. Grasas y Aceites. 2014;65:e029. doi: 10.3989/gya.109213. DOI
Krist S., Stuebiger G., Unterweger H., Bandion F., Buchbauer G. Analysis of Volatile Compounds and Triglycerides of Seed Oils Extracted from Different Poppy Varieties (Papaver somniferum L.) J. Agric. Food Chem. 2005;53:8310–8316. doi: 10.1021/jf0580869. PubMed DOI
Krist S., Stuebiger G., Bail S., Unterweger H. Analysis of volatile compounds and triacylglycerol composition of fatty seed oil gained from flax and false flax. Eur. J. Lipid Sci. Technol. 2006;108:48–60. doi: 10.1002/ejlt.200500267. DOI
Krist S., Stuebiger G., Bail S., Unterweger H. Detection of Adulteration of Poppy Seed Oil with Sunflower Oil Based on Volatiles and Triacylglycerol Composition. J. Agric. Food Chem. 2006;54:6385–6389. doi: 10.1021/jf060500x. PubMed DOI
Kopuncová M., Sádecká J., Kolek E., Havrlentová M., Blaško J. Key odour-active compounds in selected Slovakian poppy seed (Papaver somniferum L.) varieties revealed by gas chromatography-olfactometry. J. Food Nutr. Res. 2016;55:10.