The Variability of Nitrogen Forms in Soils Due to Traditional and Precision Agriculture: Case Studies in Poland
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33430097
PubMed Central
PMC7827450
DOI
10.3390/ijerph18020465
PII: ijerph18020465
Knihovny.cz E-zdroje
- Klíčová slova
- ammonium, fertilization, migration of nitrogen forms, nitrate,
- MeSH
- dusík * analýza MeSH
- lidé MeSH
- průmyslová hnojiva analýza MeSH
- půda * MeSH
- zemědělství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- dusík * MeSH
- průmyslová hnojiva MeSH
- půda * MeSH
The soil and human health issues are closely linked. Properly managed nitrogen (N) does not endanger human health and increases crop production, nevertheless when overused and uncontrolled, can contribute to side effects. This research was intended to highlight that there is a need for carrying out monitoring studies in agricultural areas in order to expand the available knowledge on the content of N forms in agricultural lands and proper management in farming practice. The impact of two types of fertilization, concerning spatially variable (VRA) and uniform (UNI) N dose, on the distribution of N forms in soils was analyzed. The analysis was performed on the basis of soil monitoring data from agricultural fields located in three different experimental sites in Poland. The analyses performed at selected sites were supported by statistical evaluation and recognition of spatial diversification of N forms in soil. It was revealed that the movement of unused N forms to deeper parts of the soil, and therefore to the groundwater system, is more limited due to VRA fertilization. Finally, it was also concluded that the management in agricultural practice should be based on the prediction of spatial variability of soil properties that allow to ensure proper application of N fertilizers, resulting in the reduction of possible N losses.
Zobrazit více v PubMed
Xia X., Zhang S., Li S., Zhang J., Wang G., Zhang L., Wang J., Li Z. The cycle of nitrogen in river systems: Sources, transformation, and flux. Environ. Sci. Process. Impacts. 2018;20:863–891. doi: 10.1039/C8EM00042E. PubMed DOI
Pajewski T. Water pollution as a negative effect of agricultural activity. Sci. Ann. Assoc. Agric. Agribus. Econ. 2016;18:191–195. (In Polish)
Bechmann M. Nitrogen losses from agriculture in the Baltic Sea region. Long-term monitoring of nitrogen in surface and subsurface runoff from small agricultural dominated catchments in Norway. Agric. Ecosyst. Environ. 2014 doi: 10.1016/j.agee.2014.05.010. DOI
Vaverková M., Adamcová D. Can Vegetation Indicate a Municipal Solid Waste Landfill’s Impact on the Environment? Polish J. Environ. Stud. 2014;23:501–509.
Wick K., Heumesser C., Schmid E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012;111:178–186. doi: 10.1016/j.jenvman.2012.06.030. PubMed DOI PMC
Kyllmar K., Bechmann M., Deelstra J., Iital A., Blicher-Mathiesen G., Jansons V., Koskiaho J., Povilaitis A. Long-term monitoring of nutrient losses from agricultural catchments in the Nordic-Baltic region: A discussion of methods, uncertainties and future needs. Agric. Ecosyst. Environ. 2014;198:4–12. doi: 10.1016/j.agee.2014.07.005. DOI
Elbl J., Vaverková M., Adamcová D., Plošek L., Kintl A., Lošák T., Hynšt J., Kotovicová J. Influence of fertilization on microbial activities, soil hydrophobicity and mineral nitrogen leaching. Ecol. Chem. Eng. S. 2014;21:661–675. doi: 10.1515/eces-2014-0048. DOI
Gao S., Xu P., Zhou F., Yang H., Zheng C., Cao W., Tao S., Piao S., Zhao Y., Ji X., et al. Quantifying nitrogen leaching response to fertilizer additions in China’s cropland. Environ. Pollut. 2016;211:241–251. doi: 10.1016/j.envpol.2016.01.010. PubMed DOI
Mosier A.R., Syers J.K., Freney J.R. Assessing the Impacts of Fertilizer Use on Food Production and the Environment. Island Press; Washington, DC, USA: 2004. Agriculture and the Nitrogen Cycle.
Gray N.F. Problems and Solutions. 2nd ed. Cambridge University Press; Cambridge, UK: 2008. Drinking Water Quality.
Füleky G. Accumulation and depletion of fertilizer originated nitrate-N and ammonium-N in deeper soil layers. Columella J. Agric. Environ. Sci. 2014;1:7–16. doi: 10.18380/SZIE.COLUM.2014.1.2.7. DOI
Jego G., Sanchez-Perez J.M., Justes E. Predicting soil water and mineral nitro-gen contents with the STICS model for estimation nitrate leaching under agricultural fields. Agric. Water Manag. 2012;107:54–65. doi: 10.1016/j.agwat.2012.01.007. DOI
Sieczka A., Bujakowski F., Falkowski T., Koda E. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water. 2018;10:399. doi: 10.3390/w10040399. DOI
Kalenik M., Chalecki M. Investigations on the effectiveness of wastewater purification in medium sand with assisting clinoptilolite layer. Environ. Prot. Eng. 2019;45:117–126. doi: 10.37190/epe190208. DOI
Eurostat. [(accessed on 12 September 2018)]; Available online: https://ec.europa.eu/eurostat/home.
Mikula K., Izydorczyk G., Skrzypczak D., Mironiuk M., Moustakas K., Witek-Krowiak A., Chojnacka K. Controlled release micronutrient fertilizers for precision agriculture—A Review. Sci. Total Environ. 2020;712:136365. doi: 10.1016/j.scitotenv.2019.136365. PubMed DOI
Kiełbasa P., Zagórda M., Jabłoński P., Koronczok J. Porównanie zróżnicowania przewodności elektrycznej gleby wykonanej urządzeniem Topsoil Mapper i jej charakterystyk penetrometrycznych. Przegląd Elektrotechniczny. 2020;96:146–150. (In Polish)
Leszkowska L., Rzymowski M., Nyka K., Kulas Ł. Simple Superstrate Antenna for Connectivity Improvement in Precision Farming Applications; Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting; Montréal, QC, Canada. 5–10 July 2020; DOI
Niedbała G. Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed. Sustainability. 2019;11:533. doi: 10.3390/su11020533. DOI
Barwicki J., Mazur K., Borek K., Wardal W.J. Development of plant cultivation using precision agriculture. Polish Tech. Rev. 2019;2:15–20. doi: 10.15199/180.2019.2.3. DOI
Barwicki J., Borek K. Remote sensing in farm machinery design—As fundamental improvement of development—Of precision agriculture phenomenon. Polish Tech. Rev. 2019;3:26–30.
Zawada M., Ciechanowski M., Szulc T., Szychta M., Smela A., Kamprowski R. Systemy wizyjne we współczesnym rolnictwie. Technika Ogrodnicza Rolnicza i Leśna. 2019;1:13–16.
Lorencowicz E. Cyfrowe rolnictwo-cyfrowe zarządzanie. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu. 2018;XX:104–110. doi: 10.5604/01.3001.0012.2952. (In Polish) DOI
Piekutowska M., Niedbała G., Adamski M., Czechlowski M., Wojciechowski T., Czechowska-Kosacka A., Wójcik Oliveira K. Modeling methods of predicting potato yield—Examples and possibilities of application. J. Res. Appl. Agric. Eng. 2018;63:176–180.
Czechlowski M., Wojciechowski T., Adamski M., Niedbała G., Piekutowska M. Application of ASG-EUPOS high precision positioning system for cereal harvester monitoring. J. Res. Appl. Agric. Eng. 2018;63:44–50.
Usowicz B., Lipiec J. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil Tillage Res. 2017;174:241–250. doi: 10.1016/j.still.2017.07.015. DOI
Mazur P., Chojnacki J. Wykorzystanie dronów do teledetekcji. Technika Rolnicza Ogrodnicza Leśna. 2017;1:25–28.
Laskowska P.J. Materiały pokonferencyjne III Ogólnopolskiej Konferencji Interdyscyplinarnej “Współczesne Zastosowania Informatyki”. Instytut Informatyki Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach; Siedlce, Poland: 2017. Informatyka w rolnictwie, czyli rolnictwo precyzyjne. (In Polish)
Samborski S.M., Gozdowski D., Walsh O.S., Kyveryga P., Stępień M. Sensitivity of sensor-based nitrogen rates to selection of within-field calibration strips in winter wheat. Crop Pasture Sci. 2017;68:101–114. doi: 10.1071/CP16380. DOI
Żak A. Innovations in plant production as an opportunity for Polish agriculture. J. Agribus. Rural Dev. 2017;1:239–246. doi: 10.17306/J.JARD.2017.00317. DOI
Borusiewicz A., Kapela K., Drożyner P., Marczuk T. Application of precision agriculture technology in Podlaskie Voivodeship. Agric. Eng. 2016;20:5–11. doi: 10.1515/agriceng-2016-0001. DOI
Berner B., Chojnacki J. Wykorzystanie dronów w rolnictwie precyzyjnym. Technika Rolnicza Ogrodnicza Leśna. 2016;6:19–21.
Samborski S.M., Gozdowski D., Stępień M., Walsh O.S., Leszczyńska E. On-farm evaluation of an active optical sensor performance for variable nitrogen application in winter wheat. Eur. J. Agronomy. 2016;74:56–67. doi: 10.1016/j.eja.2015.11.020. DOI
Wójtowicz M., Wójtowicz A., Piekarczyk J. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 2016;11:31–50.
Wójcicki Z., Rudeńska B. Systemy rolniczej produkcji ekologicznej i precyzyjnej (informacyjnej) Problemy Inżynierii Rolniczej. 2015;2:5–15.
Gozdowski D., Stępień M., Samborski S., Dobers E.S., Szatyłowicz J., Chormański J. Prediction accuracy of selected spatial interpolation methods for soil texture at farm field scale. J. Soil Sci. Plant Nutr. 2015;15:639–650. doi: 10.4067/S0718-95162015005000033. DOI
Borsato E., Galindo A., Tarolli P., Sartori L., Marinello F. Evaluation of the Grey Water Footprint Comparing the Indirect Effects of Different Agricultural Practices. Sustainability. 2018;10:3992. doi: 10.3390/su10113992. DOI
Kabala C., Karczewska A., Gałka B., Cuske M., Sowiński J. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups. Environ. Monit. Assess. 2017;189:304. doi: 10.1007/s10661-017-6022-3. PubMed DOI PMC
Staszewski Z. Nitrogen in soil and its impact on the environment. Sci. Notebooks Civ. Eng. Environ. Improv. 2011;4:50–58. (In Polish)
Pawlak J. Precision farming, its role and economic efficiency. Adv. Agric. Sci. 2008;1:3–14. (In Polish)
Gao T., Pang H., Zhang J., Zhang H., Zhou J. Migration and transformation rule of nitrogen in vadose zone and groundwater: A case of Hebei plain; Proceedings of the 2011 International Conference on Electrical and Control Engineering; Yichang, China. 16–18 September 2011; pp. 3524–3527. DOI
Sieczka A., Bujakowski F., Koda E. Modelling groundwater flow and nitrate transport: A case study of an area used for precision agriculture in the middle part of the Vistula River valley, Poland. Geologos. 2018;24:225–235. doi: 10.2478/logos-2018-0023. DOI
Koda E., Sieczka A., Osiński P. Ammonium Concentration and Migration in Groundwater in the Vicinity of Waste Management Site Located in the Neighborhood of Protected Areas of Warsaw, Poland. Sustainability. 2016;8:1253. doi: 10.3390/su8121253. DOI
Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006;15:259–263. doi: 10.1127/0941-2948/2006/0130. DOI
PN-B-04481:1988 . Soil Sample Testing. Polish Committee for Standardization; Warsaw, Poland: 1988. Soils. (In Polish)
U.S. Department of Agriculture . Soil Survey Staff. Soil Survey Manual. U.S. Department of Agriculture; Washington, DC, USA: 1951. Soil Conservation Service. Agricultural Handbook No. 18.
FOSS Tecator AB . Application Sub Note 3313, The Determination of Nitrogen According to Kjedahl in Soil. FOSS; Höganäs, Sweden: 2003.
Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947;18:50–60. doi: 10.1214/aoms/1177730491. DOI
Rabiej M. Statistical Analysis with Statistica and Excel. Helion; Gliwice, Poland: 2018. (In Polish)
Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952;47:583–621. doi: 10.1080/01621459.1952.10483441. DOI
Oliver M.A., Webster R. How geostatistics can help you? Soil Use Manag. 1991;7:206–217. doi: 10.1111/j.1475-2743.1991.tb00876.x. DOI
Monitoring of Soil Chemistry in Poland. [(accessed on 20 August 2020)]; Available online: http://www.gios.gov.pl/chemizm_gleb/
District Chemical-Agricultural Station in Lublin (DCAS) Nitrogen in Soil. [(accessed on 12 June 2020)]; Available online: http://www.oschr.pl/index.php/aktualnoci/45-azot-w-glebie.html.
Lee J., Garland G.M., Viscarra Rossel R.A. Continental soil drivers of ammonium and nitrate in Australia. Soil. 2018;4:213–224. doi: 10.5194/soil-4-213-2018. DOI
Environmental Protection Inspection (EPI) Monitoring of Soil Chemistry in Poland in 2010–2012. Environmental Monitoring Library; Warsaw, Poland: 2012. (In Polish)
Arbačauskas J., Masevičienė A., Žičkienė L., Staugaitis G. Mineral nitrogen in soils of Lithuania’s agricultural land: Comparison of oven-dried and field-moist samples. Zemdirb. Agric. 2018;105:99–104. doi: 10.13080/z-a.2018.105.013. DOI
Długosz J., Piotrowska-Długosz A. Spatial variability of soil nitrogen forms and the activity of N-cycle enzymes. Plant Soil Environ. 2016;62:502–507. doi: 10.17221/251/2016-PSE. DOI
Yan C., Du T., Yan S., Dong S., Gong Z., Zhang Z. Changes in the inorganic nitrogen content of the soil solution with rice straw retention in northeast China. Desalin. Water Treat. 2018;110:337–348. doi: 10.5004/dwt.2018.22340. DOI
Sądej W., Przekwas K. Fluctuations of nitrogen levels in soil profile under conditions of a long-term fertilization experiment. Plant Soil Environ. 2008;54:197–203. doi: 10.17221/394-PSE. DOI
Bahmani O., Nasab S.B., Behzad M., Naseri A.A. Assessment of nitrogen accumulation and movement in soil profile under different irrigation and fertilization regime. Asian J. Agric. Res. 2009;3:38–46. doi: 10.3923/ajar.2009.38.46. DOI
Sieczka A., Koda E. Kinetic and Equilibrium Studies of Sorption of Ammonium in the Soil-Water Environment in Agricultural Areas of Central Poland. Appl. Sci. 2016;6:269. doi: 10.3390/app6100269. DOI
Witheetrirong Y., Tripathi N.K., Tipdecho T., Parkpian P. Estimation of the effect of soil texture on nitrate-nitrogen content in groundwater using optical remote sensing. Int. J. Environ. Res. Public Health. 2011;8:3416–3436. doi: 10.3390/ijerph8083416. PubMed DOI PMC
Gami S.K., Lauren J.G., Duxbury J.M. Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma. 2009;153:304–311. doi: 10.1016/j.geoderma.2009.08.003. DOI
Ibrahim H., Hatira A., Gallali T. Relationship between nitrogen and soil properties: Using multiple linear regressions and structural equation modeling. Int. J. Res. Appl. Sci. 2013;2:1–7.
Corinna M., Markus K., Reinhold J. Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation. Org. Geochem. 2005;36:1311–1322. doi: 10.1016/j.orggeochem.2005.03.009. DOI
Alamgir M. The effects of soil properties to the extent of soil contamination with metals. In: Hasegawa H., Rahman I.M.M., Rahman M.A., editors. Environmental Remediation Technologies for Metal-Contaminated Soils. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1–19.
Xu G., Li Z., Li P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena. 2013;101:17–23. doi: 10.1016/j.catena.2012.09.013. DOI
Tkaczyk P., Bednarek W., Dresler S., Krzyszczak J. The effect of some soil physicochemical properties and nitrogen fertilisation on winter wheat yield. Acta Agrophys. 2018;25:107–116. doi: 10.31545/aagr0009. DOI
Lopez-Bellido L., Munoz-Romero V., Lopez-Bellido R.J. Nitrate accumulation in the soil profile: Long-term effects of tillage, rotation and N rate in a Mediterranean Vertisol. Soil Tillage Res. 2013;130:18–23. doi: 10.1016/j.still.2013.02.002. DOI
Sieczka A., Koda E. Identification of nitrogen compounds sorption parameters in the soil-water environment of a column experiment. Ochr. Sr. 2016;38:29–34. (In Polish)
Uwah E.I., Abah J., Ndahi N.P., Ogugbuaja V.O. Concentration levels of nitrate and nitrite in soils and some leafy vegetables obtained in Maiduguri, Nigeria. J. Appl. Sci. Environ. Sanit. 2009;4:233–244.
Cain M.L., Subler S., Evans J.P., Fortin M.J. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia. 1999;118:397–404. doi: 10.1007/s004420050741. PubMed DOI
Hope D., Zhu W., Gries C., Oleson J., Kaye J., Baker L.A. Spatial variation in soil inorganic nitrogen across an arid urban ecosystem. Urban Ecosyst. 2005;8:251–273. doi: 10.1007/s11252-005-3261-9. DOI
Spohn M., Novák T.J., Incze J., Giani L. Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment—a chronosequence study. Plant Soil. 2016;401:185–196. doi: 10.1007/s11104-015-2513-6. DOI
Liu Y., Gao P., Zhang L., Niu X., Wang B. Spatial heterogeneity distribution of soil total nitrogen and total phosphorus in the Yaoxiang watershed in a hilly area of northern China based on geographic information system and geostatistics. Ecol. Evol. 2016;6:6807–6816. doi: 10.1002/ece3.2410. PubMed DOI PMC
Tang X., Xia M., Guan F., Fan S. Spatial Distribution of Soil Nitrogen, Phosphorus and Potassium Stocks in Moso Bamboo Forests in Subtropical China. Forests. 2016;7:267. doi: 10.3390/f7110267. PubMed DOI PMC
Morales L.A., Vázquez E.V., Paz-Ferreiro J. Spatial distribution and temporal variability of ammonium-nitrogen, phosphorus, and potassium in a rice field in Corrientes, Argentina. Sci. World J. 2014;2014:135906. doi: 10.1155/2014/135906. PubMed DOI PMC
Koda E., Osiński P., Sieczka A., Wychowaniak D. Areal Distribution of Ammonium Contamination of Soil-Water Environment in the Vicinity of Old Municipal Landfill Site with Vertical Barrier. Water. 2015;7:2656–2672. doi: 10.3390/w7062656. DOI
Gallardo A., Parama R., Covelo F. Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations. Plant Soil. 2006;279:333–346. doi: 10.1007/s11104-005-8552-7. DOI
Podlasek A., Bujakowski F., Koda E. The spread of nitrogen compounds in an active groundwater exchange zone within a valuable natural ecosystem. Ecol. Eng. 2020;146:105746. doi: 10.1016/j.ecoleng.2020.105746. DOI
Sieczka A. Ph.D. Thesis. Warsaw University of Life Sciences; Warsaw, Poland: 2018. Migracja Związków Azotu Pochodzenia Nawozowego w Środowisku Gruntowo-Wodnym [Migration of Nitrogen Compounds from Fertilizers in the Soil-Water Environment] (In Polish)
Urban Agriculture as an Alternative Source of Food and Water Security in Today's Sustainable Cities