Kinetics of DNA Repair in Vicia faba Meristem Regeneration Following Replication Stress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33430297
PubMed Central
PMC7825715
DOI
10.3390/cells10010088
PII: cells10010088
Knihovny.cz E-zdroje
- Klíčová slova
- 5-ethynyl-2′-deoxyuridine, DNA damage, DNA repair, DNA replication, caffeine, heterochromatin, hydroxyurea, nuclei sorting, premature chromosome condensation, replication stress,
- MeSH
- chromozomy rostlin genetika MeSH
- fluorescence MeSH
- fyziologický stres * MeSH
- heterochromatin metabolismus MeSH
- kinetika MeSH
- meristém fyziologie MeSH
- oprava DNA * MeSH
- poškození DNA MeSH
- regenerace fyziologie MeSH
- replikace DNA * MeSH
- Vicia faba fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
The astonishing survival abilities of Vicia faba, one the earliest domesticated plants, are associated, among other things, to the highly effective replication stress response system which ensures smooth cell division and proper preservation of genomic information. The most crucial pathway here seems to be the ataxia telangiectasia-mutated kinase (ATM)/ataxia telangiectasia and Rad3-related kinase (ATR)-dependent replication stress response mechanism, also present in humans. In this article, we attempted to take an in-depth look at the dynamics of regeneration from the effects of replication inhibition and cell cycle checkpoint overriding causing premature chromosome condensation (PCC) in terms of DNA damage repair and changes in replication dynamics. We were able to distinguish a unique behavior of replication factors at the very start of the regeneration process in the PCC-induced cells. We extended the experiment and decided to profile the changes in replication on the level of a single replication cluster of heterochromatin (both alone and with regard to its position in the nucleus), including the mathematical profiling of the size, activity and shape. The results obtained during these experiments led us to the conclusion that even "chaotic" events are dealt with in a proper degree of order.
Zobrazit více v PubMed
Ovejero S., Bueno A., Sacristán M.P. Working on genome stability: From the S-phase to mitosis. Genes. 2020;11:225. doi: 10.3390/genes11020225. PubMed DOI PMC
Winnicki K. ATM/ATR-dependent Tyr15 phosphorylation of cyclin-dependent kinases in response to hydroxyurea in Vicia faba root meristem cells. Protoplasma. 2013;250:1139–1145. doi: 10.1007/s00709-013-0490-2. PubMed DOI PMC
Hübner B., Strickfaden H., Müller S., Cremer M., Cremer T. Chromosome shattering: A mitotic catastrophe due to chromosome condensation failure. Eur. Biophys. J. 2009;38:729–747. PubMed
Rybaczek D., Kowalewicz-Kulbat M. Premature chromosome condensation induced by caffeine, 2-aminopurine, staurosporine and sodium metavanadate in S-phase arrested HeLa cells is associated with a decrease in Chk1 phosphorylation, formation of phospho-H2AX and minor cytoskeletal rearrangements. Histochem. Cell Biol. 2011;135:263–280. PubMed PMC
Masamsetti V.P., Low R.R.J., Mak K.S., O’Connor A., Riffkin C.D., Lamm N., Crabbe L., Karlseder J., Huang D.C.S., Hayashi M.T., et al. Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nat. Commun. 2019;10:4224–4239. doi: 10.1038/s41467-019-12255-w. PubMed DOI PMC
Zeman M.K., Cimprich K.A. Causes and consequences of replication stress. Nat. Cell Biol. 2014;16:2–9. doi: 10.1038/ncb2897. PubMed DOI PMC
Moiseeva T.N., Yin Y., Calderon M.J., Qian C., Schamus-Haynes S., Sugitani N., Osmanbeyoglu H.U., Rothenberg E., Watkins S.C., Bakkenist C.J. An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. Proc. Nat. Acad. Sci. USA. 2019;116:13374–13383. doi: 10.1073/pnas.1903418116. PubMed DOI PMC
Moiseeva T.N., Qian C., Sugitani N., Osmanbeyoglu H.U., Bakkenist C.J. WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1- and S-phase cells. Proc. Nat. Acad. Sci. USA. 2019;116:23891–23893. doi: 10.1073/pnas.1915108116. PubMed DOI PMC
Barnum K.J., O’Connell M.J. Cell cycle regulation by checkpoints. Methods Mol. Biol. 2014;1170:29–40. PubMed PMC
Elledge S.J. Cell cycle checkpoints: Preventing an identity crisis. Science. 1996;274:1664–1672. doi: 10.1126/science.274.5293.1664. PubMed DOI
Sarkaria J.N., Busby E.C., Tibbetts R.S., Roos P., Taya Y., Karnitz L.M., Abraham R.T. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999;59:4375–4382. PubMed
De Veylder L., Joubès J., Inzé D. Plant cell cycle transitions. Curr. Opin. Plant Biol. 2003;6:536–543. doi: 10.1016/j.pbi.2003.09.001. PubMed DOI
Lam M.H., Liu Q., Elledge S.J., Rosen J.M. Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell. 2004;6:45–59. doi: 10.1016/j.ccr.2004.06.015. PubMed DOI
Brown E.J., Baltimore D. ATR disruption lead to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000;14:397–402. PubMed PMC
Offenbacher A.R., Barry B.A. A proton wire mediates proton coupled electron transfer from hydroxyurea and other hydroxamic acids to tyrosyl radical in class Ia ribonucleotide reductase. J. Phys. Chem. B. 2020;124:345–354. doi: 10.1021/acs.jpcb.9b08587. PubMed DOI
Ünal E., Arbel-Eden A., Satter U., Shroff R., Lichten M., Haber J.E., Koshland D. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell. 2004;16:991–1002. doi: 10.1016/j.molcel.2004.11.027. PubMed DOI
Rybaczek D., Musiałek M.W., Balcerczyk A. Caffeine-induced premature chromosome condensation results in the apoptosis-like programmed cell death in root meristems of Vicia faba. PLoS ONE. 2015;10:e0142307. doi: 10.1371/journal.pone.0142307. PubMed DOI PMC
Rybaczek D., Bodys A., Maszewski J. H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia. Histochem. Cell Biol. 2007;128:227–241. doi: 10.1007/s00418-007-0311-9. PubMed DOI
Rybaczek D., Maszewski J. Phosphorylation of H2AX histones in response to double-strand breaks and induction of premature chromatin condensation in hydroxyurea-treated root meristem cells of Raphanus sativus, Vicia faba, and Allium porrum. Protoplasma. 2007;230:31–39. doi: 10.1007/s00709-006-0192-0. PubMed DOI
Ercilla A., Feu S., Aranda S., Llopis A., Brynjólfsdóttir S.H., Sørensen C.S., Toledo L.I., Agell N. Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse. Cell. Mol. Life Sci. 2020;77:735–749. doi: 10.1007/s00018-019-03206-1. PubMed DOI PMC
Moser B.A., Brondello J.-M., Baber-Furnari B., Russell P. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol. Cell. Biol. 2000;20:4288–4294. doi: 10.1128/MCB.20.12.4288-4294.2000. PubMed DOI PMC
Huang M.E., Facca C., Fatmi Z., Baïlle D., Bénakli S., Vernis L. DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo. Sci. Rep. 2016;6:29361–29372. doi: 10.1038/srep29361. PubMed DOI PMC
Nozaki T., Imari R., Tanbo M., Nagashima R., Tamura S., Tani T., Joti Y., Tomita M., Hibino K., Kanemaki M.T., et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell. 2017;67:282–293.e7. doi: 10.1016/j.molcel.2017.06.018. PubMed DOI
Allshire R.C., Hiten D.M. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 2018;19:229–244. doi: 10.1038/nrm.2017.119. PubMed DOI PMC
Trojer P., Reinberg D. Facultative heterochromatin: Is there a distinctive molecular signature? Mol. Cell. 2007;28:1–13. doi: 10.1016/j.molcel.2007.09.011. PubMed DOI
Al-Suhaibani N.A. Influence of early water deficit on seed yield and quantity of faba bean under arid environment of Saudi Arabia. J. Agric. Environ. Sci. 2009;5:649–654.
Almadini A.M. Biological and mineral nitrogen supply impacts on salinity response of faba bean (Vicia faba L.) Eur. J. Sci. Res. 2011;49:187–199.
Vioque J., Alaiz M., Girón-Calle J. Nutritional and functional properties of Vicia faba protein isolated and related fractions. Food Chem. 2012;132:67–72. doi: 10.1016/j.foodchem.2011.10.033. PubMed DOI
Ammar M.H., Anwar F., El-Harty E.H., Migdadi H.M., Abdel-Khalik S.M., Al-Faifi S.A., Farooq M., Alghamdi S.S. Physiological and yield responses of faba bean (Vicia faba L.) to drought stress in managed and open field environments. J. Agron. Crop Sci. 2015;201:280–287. doi: 10.1111/jac.12112. DOI
Farooq M., Gogoi N., Barthakur S., Baroowa B., Bharadwaj N., Alghamdi S.S., Siddique K.H.M. Drought stress in gain legumes during reproduction and gain filling. J. Agron. Crop Sci. 2017;203:81–102. doi: 10.1111/jac.12169. DOI
Farooq M., Gogoi N., Hussain M., Barthakur S., Paul S., Bharadwaj N., Migdadi H.M., Alghamdi S.S., Siddique K.H.M. Effect, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 2017;118:199–217. doi: 10.1016/j.plaphy.2017.06.020. PubMed DOI
Saban N., Bujak M. Hydroxyurea and hydroxamic acid derivatives as antitumor drugs. Cancer Chemother. Pharmacol. 2009;64:213–221. doi: 10.1007/s00280-009-0991-z. PubMed DOI
Azevedo F., Marques F., Fokt H., Oliveira R., Johansson B. Measuring oxidative DNA damage and DNA repair using the yeast comet assay. Yeast. 2011;28:55–61. doi: 10.1002/yea.1820. PubMed DOI
Klaude M., Eriksson S., Nygren J., Ahnström G. The comet assay: Mechanisms and technical considerations. Mutat. Res. 1996;363:89–96. doi: 10.1016/0921-8777(95)00063-1. PubMed DOI
Potocki L., Lewinska A., Klukowska-Rötzler J., Bielak-Zmijewska A., Grabowska W., Rzeszutek I., Kaminska P., Roga E., Bugno-Poniewierska M., Slota E., et al. Sarcoid-derived fibroblasts: Links between genomic instability, energy metabolism and senescence. Biochimie. 2014;97:163–172. doi: 10.1016/j.biochi.2013.10.010. PubMed DOI
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529–554. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Wear E.E., Concia L., Brooks A.M., Markham E.A., Lee T.-J., Allen G.C., Thompson W.F., Hanley-Bowdoin L. Plant Cell Division. Volume 1370. Humana Press; New York, NY, USA: 2012. Isolation of plant nuclei at defined cell cycle stages using EdU labeling and flow cytometry; pp. 69–86. (Part of the Methods in Molecular Biology Book Series). PubMed
Vrána J., Šimková H., Kubaláková M., Číhalíková J., Doležel J. Flow cytometric chromosome sorting in plants: The next generation. Methods. 2012;57:331–337. doi: 10.1016/j.ymeth.2012.03.006. PubMed DOI
Doležel J., Sgorbati S., Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plantarum. 1992;85:625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x. DOI
Gotoh E. G2 premature chromosome condensation/chromosome aberration assay: Drug-induced premature chromosome condensation (PCC) protocols and cytogenetic approaches in mitotic chromosome and interphase chromatin for radiation biology. Methods Mol. Biol. 2019;1984:47–60. PubMed
Nghiem P., Park P.K., Kim Y., Vaziri C., Schreiber S.L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Nat. Acad. Sci. USA. 2002;98:9092–9097. doi: 10.1073/pnas.161281798. PubMed DOI PMC
Donaldson A.D., Blow J.J. The regulation of replication origin activation. Curr. Opin. Genet. Dev. 1999;9:62–68. doi: 10.1016/S0959-437X(99)80009-4. PubMed DOI
Musiałek M.W., Rybaczek D. Behavior of replication origins in Eukaryota—Spatio-temporal dynamics of licensing and firing. Cell Cycle. 2015;14:2251–2264. doi: 10.1080/15384101.2015.1056421. PubMed DOI PMC
Mazurczyk M., Rybaczek D. Replication and re-replication: Different implications of the same mechanism. Biochimie. 2015;108:25–32. doi: 10.1016/j.biochi.2014.10.026. PubMed DOI
Fortuny A., Polo S.E. The response to DNA damage in heterochromatin domains. Chromosoma. 2018;127:291–300. doi: 10.1007/s00412-018-0669-6. PubMed DOI PMC
Chiolo I., Minoda A., Colmenares S.U., Polyzos A., Costes S.V., Karpen G.H. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell. 2011;144:732–744. doi: 10.1016/j.cell.2011.02.012. PubMed DOI PMC
Meir A., Kong M., Xue C., Green E.C. DNA curtains shed light on complex molecular systems during homologous recombination. J. Vis. Exp. 2020;160:e61320. doi: 10.3791/61320. PubMed DOI
Bétermier M., Bertrand P., Lopez B.S. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet. 2014;10:e1004086. doi: 10.1371/journal.pgen.1004086. PubMed DOI PMC
Kramara J., Osia B., Malkova A. Break induced replication: The where, the why, and the how. Trends Genet. 2018;34:518–531. doi: 10.1016/j.tig.2018.04.002. PubMed DOI PMC
Balcerczyk A., Rybaczek D., Wojtala M., Pirola L., Okabe J., El-Osta A. Pharmacological inhibition of arginine and lysine methyltransferases induces nuclear abnormalities and suppresses angiogenesis in human endothelial cells. Biochem. Pharmacol. 2016;121:18–32. doi: 10.1016/j.bcp.2016.09.013. PubMed DOI
Wojtala M., Dąbek A., Rybaczek D., Śliwińska A., Świderska E., Słapek K., El-Osta A., Balcerczyk A. Silencing lysine-specific histone demethylase 1 (LSD1) causes increased HP1-positive chromatin, stimulation of DNA repair processes, and dysregulation of proliferation by Chk1 phosphorylation in human endothelial cells. Cells. 2019;8:1212. doi: 10.3390/cells8101212. PubMed DOI PMC