CReM: chemically reasonable mutations framework for structure generation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTARF18013
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33430959
PubMed Central
PMC7178718
DOI
10.1186/s13321-020-00431-w
PII: 10.1186/s13321-020-00431-w
Knihovny.cz E-zdroje
- Klíčová slova
- De novo design, De novo structure generation, Matched molecular pairs,
- Publikační typ
- časopisecké články MeSH
Structure generators are widely used in de novo design studies and their performance substantially influences an outcome. Approaches based on the deep learning models and conventional atom-based approaches may result in invalid structures and fail to address their synthetic feasibility issues. On the other hand, conventional reaction-based approaches result in synthetically feasible compounds but novelty and diversity of generated compounds may be limited. Fragment-based approaches can provide both better novelty and diversity of generated compounds but the issue of synthetic complexity of generated structure was not explicitly addressed before. Here we developed a new framework of fragment-based structure generation that, by design, results in the chemically valid structures and provides flexible control over diversity, novelty, synthetic complexity and chemotypes of generated compounds. The framework was implemented as an open-source Python module and can be used to create custom workflows for the exploration of chemical space.
Zobrazit více v PubMed
Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des. 2013;27:675–679. doi: 10.1007/s10822-013-9672-4. PubMed DOI
Schneider P, Schneider G. De novo design at the edge of chaos. J Med Chem. 2016;59:4077–4086. doi: 10.1021/acs.jmedchem.5b01849. PubMed DOI
Schneider G. Automating drug discovery. Nat Rev Drug Discovery. 2017;17:97. doi: 10.1038/nrd.2017.232. PubMed DOI
Böhm H-J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des. 1992;6:61–78. doi: 10.1007/bf00124387. PubMed DOI
Wang R, Gao Y, Lai L. LigBuilder: a multi-purpose program for structure-based drug design. Mol Model Annu. 2000;6:498–516. doi: 10.1007/s0089400060498. DOI
Brown N, McKay B, Gilardoni F, Gasteiger J. A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. J Chem Inform Comput Sci. 2004;44:1079–1087. doi: 10.1021/ci034290p. PubMed DOI
Hartenfeller M, Zettl H, Walter M, Rupp M, Reisen F, Proschak E, Weggen S, Stark H, Schneider G. DOGS: reaction-driven de novo design of bioactive compounds. PLoS Comput Biol. 2012;8:e1002380. doi: 10.1371/journal.pcbi.1002380. PubMed DOI PMC
Firth NC, Atrash B, Brown N, Blagg J. MOARF, an integrated workflow for multiobjective optimization: implementation, synthesis, and biological evaluation. J Chem Inf Model. 2015;55:1169–1180. doi: 10.1021/acs.jcim.5b00073. PubMed DOI
Chéron N, Jasty N, Shakhnovich EI. OpenGrowth: an automated and rational algorithm for finding new protein ligands. J Med Chem. 2016;59:4171–4188. doi: 10.1021/acs.jmedchem.5b00886. PubMed DOI
Hoksza D, Škoda P, Voršilák M, Svozil D. Molpher: a software framework for systematic chemical space exploration. J Cheminform. 2014;6:7. doi: 10.1186/1758-2946-6-7. PubMed DOI PMC
Szymkuć S, Gajewska EP, Klucznik T, Molga K, Dittwald P, Startek M, Bajczyk M, Grzybowski BA. Computer-assisted synthetic planning: the end of the beginning. Angew Chem Int Ed. 2016;55:5904–5937. doi: 10.1002/anie.201506101. PubMed DOI
Batiste L, Unzue A, Dolbois A, Hassler F, Wang X, Deerain N, Zhu J, Spiliotopoulos D, Nevado C, Caflisch A. Chemical space expansion of bromodomain ligands guided by in silico virtual couplings (AutoCouple) ACS Cent Sci. 2018;4:180–188. doi: 10.1021/acscentsci.7b00401. PubMed DOI PMC
Merk D, Grisoni F, Friedrich L, Gelzinyte E, Schneider G. Computer-assisted discovery of retinoid X receptor modulating natural products and isofunctional mimetics. J Med Chem. 2018;61:5442–5447. doi: 10.1021/acs.jmedchem.8b00494. PubMed DOI
Kutchukian PS, Lou D, Shakhnovich EI. FOG: fragment optimized growth algorithm for the de novo generation of molecules occupying druglike chemical space. J Chem Inf Model. 2009;49:1630–1642. doi: 10.1021/ci9000458. PubMed DOI
Liu T, Naderi M, Alvin C, Mukhopadhyay S, Brylinski M. Break down in order to build up: decomposing small molecules for fragment-based drug design with eMolFrag. J Chem Inf Model. 2017;57:627–631. doi: 10.1021/acs.jcim.6b00596. PubMed DOI PMC
Beccari AR, Cavazzoni C, Beato C, Costantino G. LiGen: a high performance workflow for chemistry driven de novo design. J Chem Inf Model. 2013;53:1518–1527. doi: 10.1021/ci400078g. PubMed DOI
Hartenfeller M, Schneider G. Enabling future drug discovery by de novo design. Wiley Interdiscip Rev. 2011;1:742–759. doi: 10.1002/wcms.49. DOI
Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics. 2017;9:48. doi: 10.1186/s13321-017-0235-x. PubMed DOI PMC
Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de-novo drug design. Scie Adv. 2018;4(7):eaap7885. doi: 10.1126/sciadv.aap7885. PubMed DOI PMC
Yuan W, Jiang D, Nambiar DK, Liew LP, Hay MP, Bloomstein J, Lu P, Turner B, Le Q-T, Tibshirani R, Khatri P, Moloney MG, Koong AC. Chemical space mimicry for drug discovery. J Chem Inf Model. 2017;57:875–882. doi: 10.1021/acs.jcim.6b00754. PubMed DOI PMC
Li Y, Zhang L, Liu Z. Multi-objective de novo drug design with conditional graph generative model. J Cheminform. 2018;10(1):33. doi: 10.1186/s13321-018-0287-6. PubMed DOI PMC
Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm. 2018;15:4398–4405. doi: 10.1021/acs.molpharmaceut.8b00839. PubMed DOI
Putin E, Asadulaev A, Ivanenkov Y, Aladinskiy V, Sanchez-Lengeling B, Aspuru-Guzik A, Zhavoronkov A. Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model. 2018 doi: 10.1021/acs.jcim.7b00690. PubMed DOI
Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci. 2018;4:120–131. doi: 10.1021/acscentsci.7b00512. PubMed DOI PMC
Skvortsova MI, Baskin II, Slovokhotova OL, Palyulin VA, Zefirov NS. Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices) J Chem Inform Comput Sci. 1993;33:630–634. doi: 10.1021/ci00014a017. DOI
Faulon J-L, Churchwell CJ, Visco DP. The signature molecular descriptor. 2. enumerating molecules from their extended valence sequences. J Chem Inform Comput Sci. 2003;43:721–734. doi: 10.1021/ci020346o. PubMed DOI
Faulon J-L, Visco DP, Pophale RS. The signature molecular descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J Chem Inform Comput Sci. 2003;43:707–720. doi: 10.1021/ci020345w. PubMed DOI
Miyao T, Arakawa M, Funatsu K. Exhaustive structure generation for inverse-QSPR/QSAR. Mol Inform. 2010;29:111–125. doi: 10.1002/minf.200900038. PubMed DOI
Miyao T, Kaneko H, Funatsu K. Inverse QSPR/QSAR analysis for chemical structure generation (from y to x) J Chem Inf Model. 2016;56:286–299. doi: 10.1021/acs.jcim.5b00628. PubMed DOI
Miyao T, Funatsu K. Finding chemical structures corresponding to a set of coordinates in chemical descriptor space. Mol Inform. 2017;36:1700030. doi: 10.1002/minf.201700030. PubMed DOI
Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4:268–276. doi: 10.1021/acscentsci.7b00572. PubMed DOI PMC
Elton DC, Boukouvalas Z, Fuge MD, Chung PW. Deep learning for molecular design—a review of the state of the art. Mol Syst Des Eng. 2019;4:828–849. doi: 10.1039/C9ME00039A. DOI
Dalke A, Hert J, Kramer C. mmpdb: an Open-Source matched molecular pair platform for large multiproperty data sets. J Chem Inf Model. 2018;58:902–910. doi: 10.1021/acs.jcim.8b00173. PubMed DOI
Hussain J, Rea C. Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model. 2010;50:339–348. doi: 10.1021/ci900450m. PubMed DOI
Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform. 2009;1:8. doi: 10.1186/1758-2946-1-8. PubMed DOI PMC
Coley CW, Rogers L, Green WH, Jensen KF. SCScore: synthetic complexity learned from a reaction corpus. J Chem Inf Model. 2018;58:252–261. doi: 10.1021/acs.jcim.7b00622. PubMed DOI
Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–2740. doi: 10.1021/jm901137j. PubMed DOI
Brown N, Fiscato M, Segler MHS, Vaucher AC. GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model. 2019 doi: 10.1021/acs.jcim.8b00839. PubMed DOI
Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O, Belyaev S, Kurbanov R, Artamonov A, Aladinskiy V, Veselov M, Kadurin A (2019) Molecular Sets (MOSES): a benchmarking platform for molecular generation models. arxiv PubMed PMC
Structure sanitization workflow (2019). https://bitbucket.imtm.cz/projects/STD/repos/std/browse
JChem 19.2.0 (2019). ChemAxon http://www.chemaxon.com
RDKit: Open-Source Cheminformatics Software 2017.09 (2017). http://rdkit.org/
Schomburg K, Ehrlich H-C, Stierand K, Rarey M. From structure diagrams to visual chemical patterns. J Chem Inf Model. 2010;50:1529–1535. doi: 10.1021/ci100209a. PubMed DOI
Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem. 2009;52:6752–6756. doi: 10.1021/jm901241e. PubMed DOI
Yang Y, Chen H, Nilsson I, Muresan S, Engkvist O. Investigation of the relationship between topology and selectivity for druglike molecules. J Med Chem. 2010;53:7709–7714. doi: 10.1021/jm1008456. PubMed DOI
Benchmarks for interpretation of QSAR models