Development of Stimuli-Responsive Chitosan/ZnO NPs Transdermal Systems for Controlled Cannabidiol Delivery
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2017/26/D/ST8/00979
Narodowe Centrum Nauki
PubMed
33435623
PubMed Central
PMC7826855
DOI
10.3390/polym13020211
PII: polym13020211
Knihovny.cz E-zdroje
- Klíčová slova
- cannabidiol, chitosan, drug delivery,
- Publikační typ
- časopisecké články MeSH
One of the most common neurological diseases is epilepsy, which not only negatively affects the quality of people's life but also may lead to life-threatening situations when its symptoms such as seizures cannot be controlled medically. A very serious problem to be overcame is the untreatable form of this disease, which cannot be cured by any currently available medicines. Cannabidiol, which is a natural product obtained from Cannabis Sativa, brings a new hope to people suffering from drug-resistant epilepsy. However, the hydrophobic character of this compound significantly lowers its clinical efficiency. One of the promising methods of this substance bioactivity increase is delivery through the skin tissue. In this article, a new type of advanced transdermal systems based on chitosan and ZnO nanoparticles (NPs) has been developed according to Sustained Development principles. The chemical modification of the biopolymer confirmed by FT-IR method resulted in the preparation of the material with great swelling abilities and appropriate water vapor permeability. Obtained nanoparticles were investigated over their crystalline structure and morphology and their positive impact on drug loading capacity and cannabidiol controlled release was proved. The novel biomaterials were confirmed to have conductive properties and not be cytotoxic to L929 mouse fibroblasts.
Zobrazit více v PubMed
Krauss G.L., Sperling M.R. Treating patients with medically resistant epilepsy. Neurol. Clin. Pract. 2011;1:14–23. doi: 10.1212/CPJ.0b013e31823d07d1. PubMed DOI PMC
Gaston T.E., Szaflarski M., Hansen B., Bebin E.M., Jerzy P., Szaflarski J.P. Quality of life in adults enrolled in an open-label study of cannabidiol (CBD) for treatment-resistant epilepsy. Epilepsy Behav. 2019;95:10–17. doi: 10.1016/j.yebeh.2019.03.035. PubMed DOI
Thompson D.M., Martin R.C., Grayson L.P., Ampah S.B., Cutter G., Szaflarski J.P., Bebin E.M. Cognitive function and adaptive skills after a one-year trial of cannabidiol (CBD) in a pediatric sample with treatment-resistant epilepsy. Epilepsy Behav. 2020;111:107299. doi: 10.1016/j.yebeh.2020.107299. PubMed DOI
Li H., Liu Y., Tian D., Tian L., Ju X., Qi L., Wang Y., Liang C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur. J. Med. Chem. 2020;192:112163. doi: 10.1016/j.ejmech.2020.112163. PubMed DOI
Ladha K.S., Ajrawat P., Yang Y., Clarke H. Understanding the Medical Chemistry of the Cannabis Plant is Critical to Guiding Real World Clinical Evidence. Molecules. 2020;25:4042. doi: 10.3390/molecules25184042. PubMed DOI PMC
García-Gutiérrez M.S., Navarrete F., Gasparyan A., Austrich-Olivares A., Sala F., Manzanares J. Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules. 2020;10:1575. doi: 10.3390/biom10111575. PubMed DOI PMC
Silvestro S., Schepici G., Bramanti P., Mazzon E. Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease. Molecules. 2020;25:5186. doi: 10.3390/molecules25215186. PubMed DOI PMC
Iffland K., Grotenhermen F. An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis Cannabinoid Res. 2017;2:139–154. doi: 10.1089/can.2016.0034. PubMed DOI PMC
Mlost J., Bryk M., Starowicz K. Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. Int. J. Mol. Sci. 2020;21:8870. doi: 10.3390/ijms21228870. PubMed DOI PMC
Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharm. 2003;42:327–360. doi: 10.2165/00003088-200342040-00003. PubMed DOI
Paudel K.S., Hammell D.C., Agu R.U., Valiveti S., Stinchcomb A.L. Cannabidiol bioavailability after nasal and transdermal application: Effect of permeation enhancers. Drug Dev. Ind. Pharm. 2010;36:1088–1097. doi: 10.3109/03639041003657295. PubMed DOI
Scuderi C., Filippis D., Iuvone T., Blasio A., Steardo A., Esposito G. Cannabidiol in medicine: A review of its therapeutic potential in CNS disorders. Phytother. Res. 2009;23:597–602. PubMed
Grotenhermen F. Cannabinoids for therapeutic use. Designing systems to increase efficacy and reliability. Am. J. Drug Deliv. 2004;2:229–240. doi: 10.2165/00137696-200402040-00003. DOI
Devinsky O., Cilio M.R., Cross H., Fernandez-Ruiz J., French J., Hill C., Katz R., Di Marzo V., Jutras-Aswad D., Notcutt W.G., et al. Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802. doi: 10.1111/epi.12631. PubMed DOI PMC
O’Connell B.K., Gloss D., Devinsky O. Cannabinoids in treatment-resistant epilepsy: A review. Epilepsy Behav. 2017;70:341–348. doi: 10.1016/j.yebeh.2016.11.012. PubMed DOI
Lodzki M., Godin B., Rakou L., Mechoulam R., Gallily R., Touitou E. Cannabidiol—Transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release. 2004;93:377–387. doi: 10.1016/j.jconrel.2003.09.001. PubMed DOI
Lee H., Song C., Baik S., Kim D., Hyeon T., Kim D.-H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018;127:35–45. doi: 10.1016/j.addr.2017.08.009. PubMed DOI
Wang W., Xue C., Mao X. Chitosan: Structural modification, biological activity and application. Int. J. Biol. Macromol. 2020;164:4532–4546. doi: 10.1016/j.ijbiomac.2020.09.042. PubMed DOI
Bernkop-Schnürch A., Dünnhaupt S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012;81:463–469. doi: 10.1016/j.ejpb.2012.04.007. PubMed DOI
Mohammed M.A., Syeda J.T.M., Wasan K.M., Wasan E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017;9:53. doi: 10.3390/pharmaceutics9040053. PubMed DOI PMC
Parhi R. Drug delivery applications of chitin and chitosan: A review. Environ. Chem. Lett. 2020;18:577–594. doi: 10.1007/s10311-020-00963-5. DOI
Nair S.S. Chitosan-based transdermal drug delivery systems to overcome skin barrier functions. J. Drug Deliv. Ther. 2019;9:266–270. doi: 10.22270/jddt.v9i1.2180. DOI
Ali A., Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018;109:273–286. doi: 10.1016/j.ijbiomac.2017.12.078. PubMed DOI
Potaś J., Szymańska E., Winnicka K. Challenges in developing of chitosan—Based polyelectrolyte complexes as a platform for mucosal and skin drug delivery. Eur. Polym. J. 2020;140:110020. doi: 10.1016/j.eurpolymj.2020.110020. DOI
Jeong H.J., Nam S.J., Song J.G., Park S.N. Synthesis and physicochemical properties of pH-sensitive hydrogel based on carboxymethyl chitosan/2-hydroxyethyl acrylate for transdermal delivery of nobiletin. J. Drug Deliv. Sci. Technol. 2019;51:194–203. doi: 10.1016/j.jddst.2019.02.029. DOI
Nair R.S., Morris A., Billa N., Leong C.O. An Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles for Transdermal Delivery. AAPS PharmSciTech. 2019;20:69. doi: 10.1208/s12249-018-1279-6. PubMed DOI
Castilla-Casadiego D.A., Carlton H., Gonzalez-Nino D., Miranda-Muñoz K.A., Daneshpour R., Huitink D., Prinz G., Powell J., Greenlee L., Almodovar J. Design, Characterization, and Modeling of a Chitosan Microneedle Patch for Transdermal Delivery of Meloxicam as a Pain Management Strategy for Use in Cattle. Mater. Sci. Eng. C. 2021;118:111544. doi: 10.1016/j.msec.2020.111544. PubMed DOI
Dhakshinamoorthy A., Jacob M., Vignesh N.S., Varalakshmi P. Pristine and modified chitosan as solid catalysts for catalytic and biodiesel production: A minireview. Int. J. Biol. Macromol. 2020 doi: 10.1016/j.ijbiomac.2020.10.216. in press. PubMed DOI
Thein-Han W.W., Stevens W.F. Transdermal delivery controlled by a chitosan membrane. Drug Dev. Ind. Pharm. 2004;30:397–404. doi: 10.1081/DDC-120030934. PubMed DOI
Radwan-Pragłowska J., Janus Ł., Piątkowski M., Sierakowska A., Matysek D. ZnO nanorods functionalized with chitosan hydrogels crosslinked with azelaic acid for transdermal drug delivery. Colloids Surf. B. 2020;194:111170. doi: 10.1016/j.colsurfb.2020.111170. PubMed DOI
Kumaresapillai N., Basha R.A., Sathish R. Production and Evaluation of Chitosan from Aspergillus Niger MTCC Strains. Iran. J. Pharm. Sci. 2011;10:14–23. PubMed PMC
Abdel-Gawad K.M., Hifney A.F., Fawzy M.A., Gomaa M. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 2017;63:593–601. doi: 10.1016/j.foodhyd.2016.10.001. DOI
Wang Y., Li J., Hong R. Large scale synthesis of ZnO nanoparticles via homogeneous precipitation. J. Cent. South Univ. 2012;19:863–868. doi: 10.1007/s11771-012-1084-4. DOI
Ludi B. Niederberger, Zinc oxide nanoparticles: Chemical mechanisms and classical and non-classical crystallization. Dalton Trans. 2013;42:12554–12568. doi: 10.1039/c3dt50610j. PubMed DOI
Talam S., Karumuri S.R., Gunnam N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnol. 2012;2012:1–6. doi: 10.5402/2012/372505. DOI
Huang X., Zheng X., Xu Z., Yi C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int. J. Pharm. 2017;534:190–194. doi: 10.1016/j.ijpharm.2017.10.008. PubMed DOI
Martínez-Carmona M., Gun’ko Y., Vallet-Regí M. ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials. 2018;8:268. doi: 10.3390/nano8040268. PubMed DOI PMC
Dorado J., Almendros G., Field J.A., Sierra-Alvarez R. Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels. Enzyme Microb. Technol. 2001;28:550–559. doi: 10.1016/S0141-0229(00)00363-X. PubMed DOI
Takeuchi I., Suzuki T., Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for transcutaneous immunization. Colloids Surf. A Physicochem. Eng. Asp. 2021;608:125607. doi: 10.1016/j.colsurfa.2020.125607. DOI
Mikolaszek B., Kazlauske J., Larsson A., Sznitowska M. Controlled Drug Release by the Pore Structure in Polydimethylsiloxane Transdermal Patches. Polymers. 2020;12:1520. doi: 10.3390/polym12071520. PubMed DOI PMC
Wahba M.I. Enhancement of the mechanical properties of chitosan. J. Biomater. Sci. Polym. Ed. 2020;31:350–375. doi: 10.1080/09205063.2019.1692641. PubMed DOI
Ren L., Yan X., Zhou J., Tong J., Su X. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int. J. Biol. Macromol. 2017;105:1636–1643. doi: 10.1016/j.ijbiomac.2017.02.008. PubMed DOI
Xu R., Xia H., He W., Li Z., Zhao J., Liu B., Wang Y., Lei O., Kong Y., Bai Y., et al. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep. 2016;6:24596. doi: 10.1038/srep24596. PubMed DOI PMC