Ligand Binding to Dynamically Populated G-Quadruplex DNA
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
DFF-0602-01670
Danish Council for Independent Research
DFF-6110-00623
Danish Council for Independent Research
G4invivo-661415
European Union's Horizon 2020 research and innovation programme
CZ.02.1.01/0.0/0.0/15_003/0000477
European Union's Horizon 2020 research and innovation programme
ERDF
- Keywords
- G-quadruplex, Phen-DC3, dynamics, ligand binding, smFRET,
- MeSH
- Quinolines chemistry metabolism MeSH
- G-Quadruplexes * MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- Ligands * MeSH
- Fluorescence Resonance Energy Transfer MeSH
- Molecular Dynamics Simulation MeSH
- Telomere chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Quinolines MeSH
- Ligands * MeSH
Several small-molecule ligands specifically bind and stabilize G-quadruplex (G4) nucleic acid structures, which are considered to be promising therapeutic targets. G4s are polymorphic structures of varying stability, and their formation is dynamic. Here, we investigate the mechanisms of ligand binding to dynamically populated human telomere G4 DNA by using the bisquinolinium based ligand Phen-DC3 and a combination of single-molecule FRET microscopy, ensemble FRET and CD spectroscopies. Different cations are used to tune G4 polymorphism and folding dynamics. We find that ligand binding occurs to pre-folded G4 structures and that Phen-DC3 also induces G4 formation in unfolded single strands. Following ligand binding to dynamically populated G4s, the DNA undergoes pronounced conformational redistributions that do not involve direct ligand-induced G4 conformational interconversion. On the contrary, the redistribution is driven by ligand-induced G4 folding and trapping of dynamically populated short-lived conformation states. Thus, ligand-induced stabilization does not necessarily require the initial presence of stably folded G4s.
Department of Chemistry and iNANO center Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
Institute of Biophysics of the CAS 61265 Brno Czech Republic
Present address Univ Bordeaux INSERM CNRS ARNA U1212 UMR 5320 IECB 33600 Pessac France
See more in PubMed
N. Saini, Y. Zhang, K. Usdin, K. S. Lobachev, Biochimie 2013, 95, 117-123.
J. L. Huppert, FEBS J. 2010, 277, 3452-3458.
G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, Nat. Chem. 2013, 5, 182-186.
M. Di Antonio, A. Ponjavic, A. Radzevičius, R. T. Ranasinghe, M. Catalano, X. Zhang, J. Shen, L.-M. Needham, S. F. Lee, D. Klenerman, S. Balasubramanian, Nat. Chem. 2020, 12, 832-837.
G. F. Salgado, C. Cazenave, A. Kerkour, J.-L. Mergny, Chem. Sci. 2015, 6, 3314-3320.
R. Hansel-Hertsch, D. Beraldi, S. V. Lensing, G. Marsico, K. Zyner, A. Parry, M. Di Antonio, J. Pike, H. Kimura, M. Narita, D. Tannahill, S. Balasubramanian, Nat. Genet. 2016, 48, 1267-1272.
D. Rhodes, H. J. Lipps, Nucleic Acids Res. 2015, 43, 8627-8637.
K. I. E. McLuckie, M. Di Antonio, H. Zecchini, J. Xian, C. Caldas, B. F. Krippendorff, D. Tannahill, C. Lowe, S. Balasubramanian, J. Am. Chem. Soc. 2013, 135, 9640-9643.
S. Balasubramanian, L. H. Hurley, S. Neidle, Nat. Rev. Drug Discovery 2011, 10, 261-275.
S. Neidle, Nat. Rev. Chem. 2017, 1, 0041.
S. Asamitsu, T. Bando, H. Sugiyama, Chem. Eur. J. 2019, 25, 417-430.
P. L. Tran, E. Largy, F. Hamon, M. P. Teulade-Fichou, J. L. Mergny, Biochimie 2011, 93, 1288-1296;
O. Mendoza, N. M. Gueddouda, J. B. Boule, A. Bourdoncle, J. L. Mergny, Nucleic Acids Res. 2015, 43, e71;
A. De Cian, L. Guittat, M. Kaiser, B. Saccà, S. Amrane, A. Bourdoncle, P. Alberti, M.-P. Teulade-Fichou, L. Lacroix, J.-L. Mergny, Methods 2007, 42, 183-195.
A. De Cian, E. DeLemos, J. L. Mergny, M. P. Teulade-Fichou, D. Monchaud, J. Am. Chem. Soc. 2007, 129, 1856-1857.
M. Boncina, F. Hamon, B. Islam, M. P. Teulade-Fichou, G. Vesnaver, S. Haider, J. Lah, Biophys. J. 2015, 108, 2903-2911.
A. Marchand, A. Granzhan, K. Iida, Y. Tsushima, Y. Ma, K. Nagasawa, M. P. Teulade-Fichou, V. Gabelica, J. Am. Chem. Soc. 2015, 137, 750-756.
M. Boncina, C. Podlipnik, I. Piantanida, J. Eilmes, M. P. Teulade-Fichou, G. Vesnaver, J. Lah, Nucleic Acids Res. 2015, 43, 10376-10386;
S. D. Verma, N. Pal, M. K. Singh, H. Shweta, M. F. Khan, S. Sen, Anal. Chem. 2012, 84, 7218-7226;
A. Marchand, F. Rosu, R. Zenobi, V. Gabelica, J. Am. Chem. Soc. 2018, 140, 12553-12565;
S. Ceschi, E. Largy, V. Gabelica, C. Sissi, Biochimie 2020, 179, 77-84.
A. De Cian, J. L. Mergny, Nucleic Acids Res. 2007, 35, 2483-2493.
D. Luo, Y. Mu, J. Phys. Chem. B 2015, 119, 4955-4967;
F. Moraca, J. Amato, F. Ortuso, A. Artese, B. Pagano, E. Novellino, S. Alcaro, M. Parrinello, V. Limongelli, Proc. Natl. Acad. Sci. USA 2017, 114, E2136-E2145.
R. Rodriguez, G. D. Pantos, D. P. N. Goncalves, J. K. M. Sanders, S. Balasubramanian, Angew. Chem. Int. Ed. 2007, 46, 5405-5407;
Angew. Chem. 2007, 119, 5501-5503;
J. Seenisamy, S. Bashyam, V. Gokhale, H. Vankayalapati, D. Sun, A. Siddiqui-Jain, N. Streiner, K. Shin-ya, E. White, W. D. Wilson, L. H. Hurley, J. Am. Chem. Soc. 2005, 127, 2944-2959;
L. Martino, B. Pagano, I. Fotticchia, S. Neidle, C. Giancola, J. Phys. Chem. B 2009, 113, 14779-14786;
C. Lin, G. Wu, K. Wang, B. Onel, S. Sakai, Y. Shao, D. Yang, Angew. Chem. Int. Ed. 2018, 57, 10888-10893;
F. Bianchi, L. Comez, R. Biehl, F. D′Amico, A. Gessini, M. Longo, C. Masciovecchio, C. Petrillo, A. Radulescu, B. Rossi, F. Sacchetti, F. Sebastiani, N. Violini, A. Paciaroni, Nucleic Acids Res. 2018, 46, 11927-11938.
E. M. Rezler, J. Seenisamy, S. Bashyam, M. Y. Kim, E. White, W. D. Wilson, L. H. Hurley, J. Am. Chem. Soc. 2005, 127, 9439-9447.
D. P. N. Goncalves, R. Rodriguez, S. Balasubramanian, J. K. M. Sanders, Chem. Commun. 2006, 4685-4687.
M. Debnath, S. Ghosh, D. Panda, I. Bessi, H. Schwalbe, K. Bhattacharyya, J. Dash, Chem. Sci. 2016, 7, 3279-3285.
J. Šponer, G. Bussi, P. Stadlbauer, P. Kührova, P. Banas, B. Islam, S. Haider, S. Neidle, M. Otyepka, Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1246-1263;
P. Stadlbauer, M. Krepl, T. E. Cheatham III, J. Koča, J. Šponer, Nucleic Acids Res. 2013, 41, 7128-7143.
J. Y. Lee, B. Okumus, D. S. Kim, T. J. Ha, Proc. Natl. Acad. Sci. USA 2005, 102, 18938-18943.
M. Aznauryan, S. Sondergaard, S. L. Noer, B. Schiott, V. Birkedal, Nucleic Acids Res. 2016, 44, 11024-11032.
S. L. Noer, S. Preus, D. Gudnason, M. Aznauryan, J. L. Mergny, V. Birkedal, Nucleic Acids Res. 2016, 44, 464-471.
P. Maleki, J. B. Budhathoki, W. A. Roy, H. Balci, Mol. Genet. Genomics 2017, 292, 483-498.
P. Maleki, Y. Ma, K. Iida, K. Nagasawa, H. Balci, Nucleic Acids Res. 2017, 45, 288-295;
P. V. Jena, P. S. Shirude, B. Okumus, K. Laxmi-Reddy, F. Godde, I. Huc, S. Balasubramanian, T. Ha, J. Am. Chem. Soc. 2009, 131, 12522-12523;
S. Müller, K. Laxmi-Reddy, P. V. Jena, B. Baptiste, Z. Dong, F. Godde, T. Ha, R. Rodriguez, S. Balasubramanian, I. Huc, ChemBioChem 2014, 15, 2563-2570.
W. J. Chung, B. Heddi, F. Hamon, M. P. Teulade-Fichou, A. T. Phan, Angew. Chem. Int. Ed. 2014, 53, 999-1002;
Angew. Chem. 2014, 126, 1017-1020.
M. Deiana, J. Jamroskovic, I. Obi, N. Sabouri, Chem. Commun. 2020, 56, 14251-14254.
S. Bhattacharya, P. Chaudhuri, A. K. Jain, A. Paul, Bioconjugate Chem. 2010, 21, 1148-1159.
M. J. Lecours, A. Marchand, A. Anwar, C. Guetta, W. S. Hopkins, V. Gabelica, Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1353-1361.
M. Chen, G. Song, C. Wang, D. Hu, J.. Ren, X. Qu, Biophys. J. 2009, 97, 2014-2023.
R. Del Villar-Guerra, J. O. Trent, J. B. Chaires, Angew. Chem. Int. Ed. 2018, 57, 7171-7175-;
Angew. Chem. 2018, 130, 1-1;
A. Marchand, V. Gabelica, Nucleic Acids Res. 2016, 44, 10999-11012.
Y. Wang, D. J. Patel, Structure 1993, 1, 263-282.
A. T. Phan, V. Kuryavyi, H. Y. Gaw, D. J. Patel, Nat. Chem. Biol. 2005, 1, 167-173;
W. J. Chung, B. Heddi, M. Tera, K. Iida, K. Nagasawa, A. T. Phan, J. Am. Chem. Soc. 2013, 135, 13495-13501;
A. Kotar, V. Kocman, J. Plavec, Chem. Eur. J. 2020, 26, 814-817.
N. Maizels, Nat. Struct. Mol. Biol. 2006, 13, 1055-1059.
J. U. Guo, D. P. Bartel, Science 2016, 353.
A. C. Kruger, L. L. Hildebrandt, S. L. Kragh, V. Birkedal, Methods in Cell Biology 2013, 113, 1-37.
S. Preus, S. L. Noer, L. L. Hildebrandt, D. Gudnason, V. Birkedal, Nat. Methods 2015, 12, 593-594.