• This record comes from PubMed

Nanohybrid Antifungals for Control of Plant Diseases: Current Status and Future Perspectives

. 2021 Jan 13 ; 7 (1) : . [epub] 20210113

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
UHK VT2019-2012 University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
FN HK 00179906 Ministry of Health of the Czech Republic
PROGRES Q40 Charles University in Prague, Czech Republic

The changing climatic conditions have led to the concurrent emergence of virulent microbial pathogens that attack crop plants and exhibit yield and quality deterring impacts on the affected crop. To counteract, the widespread infections of fungal pathogens and post-harvest diseases it is highly warranted to develop sustainable techniques and tools bypassing traditional agriculture practices. Nanotechnology offers a solution to the problems in disease management in a simple lucid way. These technologies are revolutionizing the scientific/industrial sectors. Likewise, in agriculture, the nano-based tools are of great promise particularly for the development of potent formulations ensuring proper delivery of agrochemicals, nutrients, pesticides/insecticides, and even growth regulators for enhanced use efficiency. The development of novel nanocomposites for improved management of fungal diseases can mitigate the emergence of resilient and persistent fungal pathogens and the loss of crop produce due to diseases they cause. Therefore, in this review, we collectively manifest the role of nanocomposites for the management of fungal diseases.

See more in PubMed

Hassaan M.A., El Nemr A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020;46:207–220. doi: 10.1016/j.ejar.2020.08.007. DOI

Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M., Sharma M.P., Yadav G.S., Jhariya M.K., Jangir C.K., et al. Impact of agrochemicals on soil microbiota and management: A review. Land. 2020;9:34. doi: 10.3390/land9020034. DOI

Kalia A., Gosal S.K. Effect of pesticide application on soil microorganisms. Arch. Agron. Soil Sci. 2011;57:569–596. doi: 10.1080/03650341003787582. DOI

Shuping D.S.S., Eloff J.N. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Tradit. Complement. Altern. Med. 2017;14:120–127. doi: 10.21010/ajtcam.v14i4.14. PubMed DOI PMC

Yadav S., Sharma A.K., Kumar P. Nanoscale Self-Assembly for Therapeutic Delivery. Front. Bioeng. Biotechnol. 2020;8:1–24. doi: 10.3389/fbioe.2020.00127. PubMed DOI PMC

Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:1–33. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC

Shang Y., Kamrul Hasan M., Ahammed G.J., Li M., Yin H., Zhou J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 2019;24:2558. doi: 10.3390/molecules24142558. PubMed DOI PMC

Worrall E.A., Hamid A., Mody K.T., Mitter N., Pappu H.R. Nanotechnology for plant disease management. Agronomy. 2018;8:285. doi: 10.3390/agronomy8120285. DOI

Pestovsky Y.S., Martínez-Antonio A. The Use of Nanoparticles and Nanoformulations in Agriculture. J. Nanosci. Nanotechnol. 2017;17:8699–8730. doi: 10.1166/jnn.2017.15041. DOI

Camara M.C., Campos E.V.R., Monteiro R.A., Do Espirito Santo Pereira A., De Freitas Proença P.L., Fraceto L.F. Development of stimuli-responsive nano-based pesticides: Emerging opportunities for agriculture. J. Nanobiotechnol. 2019;17:1–19. doi: 10.1186/s12951-019-0533-8. PubMed DOI PMC

Rangaraj S., Gopalu K., Muthusamy P., Rathinam Y., Venkatachalam R., Narayanasamy K. Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.) RSC Adv. 2014;4:8461–8465. doi: 10.1039/c3ra46251j. DOI

Paek S.M., Oh J.M., Choy J.H. A lattice-engineering route to heterostructured functional nanohybrids. Chem. Asian J. 2011;6:324–338. doi: 10.1002/asia.201000578. PubMed DOI

Spadola G., Sanna V., Bartoli J., Carcelli M., Pelosi G., Biscegliel F., Restivo F.M., Degola F., Rogolino D. Thiosemicarbazone nano-formulation for the control of Aspergillus flavus. Environ. Sci. Pollut. Res. 2020 doi: 10.1007/s11356-020-08532-7. PubMed DOI

Iavicoli I., Leso V., Beezhold D.H., Shvedova A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 2017;329:96–111. doi: 10.1016/j.taap.2017.05.025. PubMed DOI PMC

Wang P., Lombi E., Zhao F., Kopittke P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016;21:699–712. doi: 10.1016/j.tplants.2016.04.005. PubMed DOI

Kashyap P.L., Kumar S., Srivastava A.K. Nanodiagnostics for plant pathogens. Environ. Chem. Lett. 2017;15:7–13. doi: 10.1007/s10311-016-0580-4. DOI

Rad F., Mohsenifar A., Tabatabaei M., Safarnejad M.R., Shahryari F., Safarpour H., Foroutan A., Mardi M., Davoudi D., Fotokian M. Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. J. Plant Pathol. 2012;94:525–534. doi: 10.4454/JPP.FA.2012.054. DOI

Yao K.S., Li S.J., Tzeng K.C., Cheng T.C., Chang C.Y., Chiu C.Y., Liao C.Y., Hsu J.J., Lin Z.P. Fluorescence Silica Nanoprobe as a Biomarker for Rapid Detection of Plant Pathogens. Adv. Mater. Res. 2009;79–82:513–516. doi: 10.4028/www.scientific.net/AMR.79-82.513. DOI

Singh S., Singh M., Agrawal V.V., Kumar A. An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films. 2010;519:1156–1159. doi: 10.1016/j.tsf.2010.08.061. DOI

Wang Z., Wei F., Liu S.Y., Xu Q., Huang J.Y., Dong X.Y., Yu J.H., Yang Q., Di Zhao Y., Chen H. Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta. 2010;80:1277–1281. doi: 10.1016/j.talanta.2009.09.023. PubMed DOI

Schwenkbier L., Pollok S., König S., Urban M., Werres S., Cialla-May D., Weber K., Popp J. Towards on-site testing of Phytophthora species. Anal. Methods. 2015;7:211–217. doi: 10.1039/C4AY02287D. DOI

Ariffin S.A.B., Adam T., Hashim U., Faridah S., Zamri I., Uda M.N.A. Plant diseases detection using nanowire as biosensor transducer. Adv. Mater. Res. 2014;832:113–117. doi: 10.4028/www.scientific.net/AMR.832.113. DOI

Ashfaq M., Talreja N., Chuahan D., Srituravanich W. Polymeric Nanocomposite-Based Agriculture Delivery System: Emerging Technology for Agriculture. Genet. Eng. Glimpse Tech. Appl. 2020:1–16. doi: 10.5772/intechopen.89702. DOI

Winter J., Nicolas J., Ruan G. Hybrid nanoparticle composites. J. Mater. Chem. B. 2020;8:4713–4714. doi: 10.1039/D0TB90071K. PubMed DOI

Adnan M.M., Dalod A.R.M., Balci M.H., Glaum J., Einarsrud M.A. In situ synthesis of hybrid inorganic-polymer nanocomposites. Polymers. 2018;10:1129. doi: 10.3390/polym10101129. PubMed DOI PMC

Fahmy H.M., Salah Eldin R.E., Abu Serea E.S., Gomaa N.M., AboElmagd G.M., Salem S.A., Elsayed Z.A., Edrees A., Shams-Eldin E., Shalan A.E. Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials. RSC Adv. 2020;10:20467–20484. doi: 10.1039/D0RA02922J. PubMed DOI PMC

Idumah C.I., Zurina M., Ogbu J., Ndem J.U., Igba E.C. A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture. Compos. Interfaces. 2020;27:1–72. doi: 10.1080/09276440.2019.1600972. DOI

Sadeghi R., Rodriguez R.J., Yao Y., Kokini J.L. Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks. Annu. Rev. Food Sci. Technol. 2017;8:467–492. doi: 10.1146/annurev-food-041715-033338. PubMed DOI

Padmanaban V.C., Giri Nandagopal M.S., Madhangi Priyadharshini G., Maheswari N., Janani Sree G., Selvaraju N. Advanced approach for degradation of recalcitrant by nanophotocatalysis using nanocomposites and their future perspectives. Int. J. Environ. Sci. Technol. 2016;13:1591–1606. doi: 10.1007/s13762-016-1000-9. DOI

Wei X., Wang X., Gao B., Zou W., Dong L. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS Omega. 2020;5:5748–5755. doi: 10.1021/acsomega.9b03787. PubMed DOI PMC

Kalia A., Sharma S.P., Kaur H., Kaur H. Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: Prospects and challenges. In: Abd-Elsalam K.A., editor. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystem. Elsevier; Amsterdam, The Netherlands: 2020. pp. 99–134.

Guha T., Gopal G., Kundu R., Mukherjee A. Nanocomposites for Delivering Agrochemicals: A Comprehensive Review. J. Agric. Food Chem. 2020;68:3691–3702. doi: 10.1021/acs.jafc.9b06982. PubMed DOI

Usman M., Farooq M., Wakeel A., Nawaz A., Cheema S.A., Ur Rehman H., Ashraf I., Sanaullah M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020;721:137778. doi: 10.1016/j.scitotenv.2020.137778. PubMed DOI

Adisa I.O., Pullagurala V.L.R., Peralta-Videa J.R., Dimkpa C.O., Elmer W.H., Gardea-Torresdey J.L., White J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano. 2019;6:2002–2030. doi: 10.1039/C9EN00265K. DOI

Min J.S., Kim K.S., Kim S.W., Jung J.H., Lamsal K., Kim S.B., Jung M., Lee Y.S. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol. J. 2009;25:376–380. doi: 10.5423/PPJ.2009.25.4.376. DOI

Sidhu A., Bala A., Singh H., Ahuja R., Kumar A. Development of MgO-sepoilite Nanocomposites against Phytopathogenic Fungi of Rice (Oryzae sativa): A Green Approach. ACS Omega. 2020;5:13557–13565. doi: 10.1021/acsomega.0c00008. PubMed DOI PMC

Wang X., Liu X., Chen J., Han H., Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon. 2014;68:798–806. doi: 10.1016/j.carbon.2013.11.072. DOI

Chen J., Sun L., Cheng Y., Lu Z., Shao K., Li T., Hu C., Han H. Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium graminearum for Crop Disease Prevention. ACS Appl. Mater. Interfaces. 2016;8:24057–24070. doi: 10.1021/acsami.6b05730. PubMed DOI

Wang X., Cai A., Wen X., Jing D., Qi H., Yuan H. Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Sci. China Mater. 2017;60:258–268. doi: 10.1007/s40843-016-9005-9. DOI

Rodríguez-González V., Domínguez-Espíndola R.B., Casas-Flores S., Patrón-Soberano O.A., Camposeco-Solis R., Lee S.W. Antifungal nanocomposites inspired by titanate nanotubes for complete inactivation of Botrytis cinerea isolated from tomato infection. ACS Appl. Mater. Interfaces. 2016;8:31625–31637. doi: 10.1021/acsami.6b10060. PubMed DOI

Hoseinzadeh A., Habibi-Yangjeh A., Davari M. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Prog. Nat. Sci. Mater. Int. 2016;26:334–340. doi: 10.1016/j.pnsc.2016.06.006. DOI

Bhavyasree P.G., Xavier T.S. Green synthesis of Copper Oxide/Carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon. 2020;6:e03323. doi: 10.1016/j.heliyon.2020.e03323. PubMed DOI PMC

Olad A. Advanced Polymeric Materials: Structure Property Relationships. CRC Press; Boca Raton, FL, USA: 2011. Polymer–Clay nanocomposites; pp. 349–396.

Yao J., Yang M., Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014;114:6130–6178. doi: 10.1021/cr200359p. PubMed DOI

Sampathkumar K., Tan K.X., Loo S.C.J. Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers. iScience. 2020;23:101055. doi: 10.1016/j.isci.2020.101055. PubMed DOI PMC

Vega-Vásquez P., Mosier N.S., Irudayaraj J. Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Front. Bioeng. Biotechnol. 2020;8:1–16. doi: 10.3389/fbioe.2020.00079. PubMed DOI PMC

Youssef K., Hashim A.F. Inhibitory effect of clay/chitosan nanocomposite against Penicillium digitatum on citrus and its possible mode of action. Jordan J. Biol. Sci. 2020;13:349–355.

Al-Dhabaan F.A., Shoala T., Ali A.A.M., Alaa M., Abd-Elsalam K. Chemically-Produced Copper, Zinc Nanoparticles and Chitosan-Bimetallic Nanocomposites and Their Antifungal Activity against Three Phytopathogenic Fungi. Int. J. Agric. Technol. 2017;13:753–769.

Abd-Elsalam K.A., Vasil’kov A.Y., Said-Galiev E.E., Rubina M.S., Khokhlov A.R., Naumkin A.V., Shtykova E.V., Alghuthaymi M.A. Bimetallic blends and chitosan nanocomposites: Novel antifungal agents against cotton seedling damping-off. Eur. J. Plant Pathol. 2018;151:57–72. doi: 10.1007/s10658-017-1349-8. DOI

Kaur P., Thakur R., Choudhary A. An In Vitro Study of The Antifungal Activity of Silver/Chitosan Nanoformulations Against Important Seed Borne Pathogens. Int. J. Sci. Technol. Res. 2012;1:83–86.

Youssef K., de Oliveira A.G., Tischer C.A., Hussain I., Roberto S.R. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macromol. 2019;141:247–258. doi: 10.1016/j.ijbiomac.2019.08.249. PubMed DOI

Mathew T.V., Kuriakose S. Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups. Mater. Sci. Eng. C. 2013;33:4409–4415. doi: 10.1016/j.msec.2013.06.037. PubMed DOI

Beyki M., Zhaveh S., Khalili S.T., Rahmani-Cherati T., Abollahi A., Bayat M., Tabatabaei M., Mohsenifar A. Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2014;54:310–319. doi: 10.1016/j.indcrop.2014.01.033. DOI

Patil S., Chandrasekaran R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020;18 doi: 10.1186/s43141-020-00081-3. PubMed DOI PMC

Kalia A., Abd-Elsalam K.A., Kuca K. Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects. J. Fungi. 2020;6:222. doi: 10.3390/jof6040222. PubMed DOI PMC

Arciniegas-Grijalba P.A., Patiño-Portela M.C., Mosquera-Sánchez L.P., Guerrero-Vargas J.A., Rodríguez-Páez J.E. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 2017;7:225–241. doi: 10.1007/s13204-017-0561-3. DOI

Patra P., Mitra S., Debnath N., Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: An in vivo and in vitro toxicity study. Langmuir. 2012;28:16966–16978. doi: 10.1021/la304120k. PubMed DOI

Shoeb M., Singh B.R., Khan J.A., Khan W., Singh B.N., Singh H.B., Naqvi A.H. ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4 doi: 10.1088/2043-6262/4/3/035015. DOI

Lipovsky A., Nitzan Y., Gedanken A., Lubart R. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology. 2011;22 doi: 10.1088/0957-4484/22/10/105101. PubMed DOI

Yu Z., Li Q., Wang J., Yu Y., Wang Y., Zhou Q., Li P. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Res. Lett. 2020;15 doi: 10.1186/s11671-020-03344-7. PubMed DOI PMC

Fones H.N., Bebber D.P., Chaloner T.M., Kay W.T., Steinberg G., Gurr S.J. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food. 2020;1:332–342. doi: 10.1038/s43016-020-0075-0. PubMed DOI

Thipe V.C., Thatyana M., Ajayi F.R., Njobeh P.B., Katti K.V. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier; Amsterdam, The Netherlands: 2020. Hybrid nanomaterials for detection, detoxification, and management mycotoxins; pp. 271–285.

Rhouati A., Bulbul G., Latif U., Hayat A., Li Z.H., Marty J.L. Nano-aptasensing in mycotoxin analysis: Recent updates and progress. Toxins. 2017;9:349. doi: 10.3390/toxins9110349. PubMed DOI PMC

Santos A.O., Vaz A., Rodrigues P., Veloso A.C.A., Venâncio A., Peres A.M. Thin films sensor devices for mycotoxins detection in foods: Applications and challenges. Chemosensors. 2019;7:3. doi: 10.3390/chemosensors7010003. DOI

Ananikov V.P. Organic-inorganic hybrid nanomaterials. Nanomaterials. 2019;9:1197. doi: 10.3390/nano9091197. PubMed DOI PMC

Bhardwaj H., Pandey M.K., Sumana R., Sumana G. Electrochemical Aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Microchim. Acta. 2019;186:1–12. doi: 10.1007/s00604-019-3701-5. PubMed DOI

Hamza Z., El-Hashash M., Aly S., Hathout A., Soto E., Sabry B., Ostroff G. Preparation and characterization of yeast cell wall beta-glucan encapsulated humic acid nanoparticles as an enhanced aflatoxin B1 binder. Carbohydr. Polym. 2019;203:185–192. doi: 10.1016/j.carbpol.2018.08.047. PubMed DOI

Jampílek J., Kráĺová K. Nanomycotoxicology. Academic Press; Cambridge, MA, USA: 2020. Nanocomposites: Synergistic nanotools for management of mycotoxigenic fungi; pp. 349–383.

Pirouz A.A., Selamat J., Iqbal S.Z., Mirhosseini H., Karjiban A.R., Bakar F.A. The use of innovative and efficient nanocomposite (magnetic graphene oxide) for the reduction on of Fusarium mycotoxins in palm kernel cake. Sci. Rep. 2017;7:1–9. doi: 10.1038/s41598-017-12341-3. PubMed DOI PMC

Ji J., Xie W. Detoxification of Aflatoxin B 1 by magnetic graphene composite adsorbents from contaminated oils. J. Hazard. Mater. 2020;381:120915. doi: 10.1016/j.jhazmat.2019.120915. PubMed DOI

Alghuthaymi M.A., Abd-Elsalam K.A., Shami A., Said-Galive E., Shtykova E.V., Naumkin A.V. Silver/Chitosan Nanocomposites: Preparation and Characterization and Their Fungicidal Activity against Dairy Cattle Toxicosis Penicillium expansum. J. Fungi. 2020;6:51. doi: 10.3390/jof6020051. PubMed DOI PMC

Abd-Elsalam K.A., Alghuthaymi M.A., Shami A., Rubina M.S., Abramchuk S.S., Shtykova E.V., Vasil’kov A. Copper-Chitosan Nanocomposite Hydrogels Against Aflatoxigenic Aspergillus flavus from Dairy Cattle Feed. J. Fungi. 2020;6:112. doi: 10.3390/jof6030112. PubMed DOI PMC

Tarus B.K., Mwasiagi J.I., Fadel N., Al-Oufy A., Elmessiry M. Electrospun cellulose acetate and poly(vinyl chloride) nanofiber mats containing silver nanoparticles for antifungi packaging. SN Appl. Sci. 2019;1:1–12. doi: 10.1007/s42452-019-0271-4. DOI

González-Estrada R., Blancas-Benítez F., Velázquez-Estrada R.M., Montaño-Leyva B., Ramos-Guerrero A., Aguirre-Güitrón L., Moreno-Hernández C., Coronado-Partida L., Herrera-González J.A., Rodríguez-Guzmán C.A., et al. Alternative Eco-Friendly Methods in the Control of Post-Harvest Decay of Tropical and Subtropical Fruits. Mod. Fruit Ind. 2020 doi: 10.5772/intechopen.85682. DOI

Roberto S.R., Youssef K., Hashim A.F., Ippolito A. Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials. 2019;9:1752. doi: 10.3390/nano9121752. PubMed DOI PMC

Singh D., Sharma R.R. Postharvest Disinfection of Fruits and Vegetables. Elsevier; Amsterdam, The Netherlands: 2018. Postharvest Diseases of Fruits and Vegetables and Their Management; pp. 1–52.

Pétriacq P., López A., Luna E. Fruit decay to diseases: Can induced resistance and priming help? Plants. 2018;7:77. doi: 10.3390/plants7040077. PubMed DOI PMC

Zhang X., Xiao G., Wang Y., Zhao Y., Su H., Tan T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polym. 2017;169:101–107. doi: 10.1016/j.carbpol.2017.03.073. PubMed DOI

Kumar S., Shukla A., Baul P.P., Mitra A., Halder D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life. 2018;16:178–184. doi: 10.1016/j.fpsl.2018.03.008. DOI

Li J., Sun Q., Sun Y., Chen B., Wu X., Le T. Improvement of banana postharvest quality using a novel soybean protein isolate/cinnamaldehyde/zinc oxide bionanocomposite coating strategy. Sci. Hortic. 2019;258:108786. doi: 10.1016/j.scienta.2019.108786. DOI

Jagana D., Hegde Y.R., Lella R. Green Nanoparticles—A Novel Approach for the Management of Banana Anthracnose Caused by Colletotrichum musae. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:1749–1756. doi: 10.20546/ijcmas.2017.610.211. DOI

Li W., Li L., Cao Y., Lan T., Chen H., Qin Y. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials. 2017;7:207. doi: 10.3390/nano7080207. PubMed DOI PMC

Chowdappa P., Shivakumar G., Chettana C.S., Madhura S. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. African J. Microbiol. Res. 2014;8:1803–1812. doi: 10.5897/ajmr2013.6584. DOI

Dubey P.K., Shukla R.N., Srivastava G., Mishra A.A., Pandey A. Study on Quality Parameters and Storage Stability of Mango Coated with Developed Nanocomposite Edible Film. Int. J. Curr. Microbiol. Appl. Sci. 2019;8:2899–2935. doi: 10.20546/ijcmas.2019.804.339. DOI

Zahid N., Ali A., Manickam S., Siddiqui Y., Maqbool M. Potential of chitosan-loaded nanoemulsions to control different Colletotrichum spp. and maintain quality of tropical fruits during cold storage. J. Appl. Microbiol. 2012;113:925–939. doi: 10.1111/j.1365-2672.2012.05398.x. PubMed DOI

Nguyen N.T., Nguyen D.H., Pham D.D., Nguyen Q.H., Hoang D.Q. New oligochitosan-nanosilica hybrid materials: Preparation and application on chili plants for resistance to anthracnose disease and growth enhancement. Polym. J. 2017;49:861–869. doi: 10.1038/pj.2017.58. DOI

Nguyen T.N., Huynh T.N., Hoang D., Nguyen D.H., Nguyen Q.H., Tran T.H. Functional Nanostructured Oligochitosan–Silica/Carboxymethyl Cellulose Hybrid Materials: Synthesis and Investigation of Their Antifungal Abilities. Polymers. 2019;11:628. doi: 10.3390/polym11040628. PubMed DOI PMC

Ahmed T., Noman M., Luo J., Muhammad S., Shahid M., Ali M.A., Zhang M., Li B. Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. Int. J. Biol. Macromol. 2020;24:S0141–S8130. doi: 10.1016/j.ijbiomac.2020.11.148. PubMed DOI

El-Abeid S.E., Ahmed Y., Daròs J.A., Mohamed M.A. Reduced Graphene Oxide Nanosheet-Decorated Copper Oxide Nanoparticles: A Potent Antifungal Nanocomposite against Fusarium Root Rot and Wilt Diseases of Tomato and Pepper Plants. Nanomaterials. 2020;10:1001. doi: 10.3390/nano10051001. PubMed DOI PMC

Auyeung A., Casillas-Santana M.Á., Martínez-Castañón G.A., Slavin Y.N., Zhao W., Asnis J., Häfeli U.O., Bach H. Effective Control of Molds Using a Combination of Nanoparticles. PLoS ONE. 2017;12:e0169940. doi: 10.1371/journal.pone.0169940. PubMed DOI PMC

De La Rosa-García S.C., Martínez-Torres P., Gómez-Cornelio S., Corral-Aguado M.A., Quintana P., Gómez-Ortíz N.M. Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J. Nanomater. 2018;2018 doi: 10.1155/2018/3498527. DOI

Dimkpa C.O., McLean J.E., Latta D.E., Manangón E., Britt D.W., Johnson W.P., Boyanov M.I., Anderson A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 2012;14 doi: 10.1007/s11051-012-1125-9. DOI

Vannini C., Domingo G., Onelli E., De Mattia F., Bruni I., Marsoni M., Bracale M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J. Plant Physiol. 2014;171:1142–1148. doi: 10.1016/j.jplph.2014.05.002. PubMed DOI

Wu B., Zhu L., Le X.C. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.) Environ. Pollut. 2017;230:302–310. doi: 10.1016/j.envpol.2017.06.062. PubMed DOI

Shen C.X., Zhang Q.F., Li J., Bi F.C., Yao N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am. J. Bot. 2010;97:1602–1609. doi: 10.3732/ajb.1000073. PubMed DOI

Rienzie R., Adassooriya N.M. Nanomaterials: Ecotoxicity, Safety, and Public Perception. Springer International Publishing; Berlin, Germany: 2018. Nanomaterials: Ecotoxicity, Safety, and Public Perception; pp. 207–234.

Zheng L.P., Zhang Z., Zhang B., Wang J.W. Antifungal properties of Ag-SiO2 core-shell nanoparticles against phytopathogenic fungi. Adv. Mater. Res. 2012;476:814–818. doi: 10.4028/www.scientific.net/AMR.476-478.814. DOI

Vittori Antisari L., Carbone S., Gatti A., Vianello G., Nannipieri P. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ. Sci. Pollut. Res. 2015;22:1841–1853. doi: 10.1007/s11356-014-3509-0. PubMed DOI

Saratale R.G., Karuppusamy I., Saratale G.D., Pugazhendhi A., Kumar G., Park Y., Ghodake G.S., Bharagava R.N., Banu J.R., Shin H.S. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf. B Biointerfaces. 2018;170:20–35. doi: 10.1016/j.colsurfb.2018.05.045. PubMed DOI

Saratale R.G., Saratale G.D., Shin H.S., Jacob J.M., Pugazhendhi A., Bhaisare M., Kumar G. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: Current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. 2018;25:10164–10183. doi: 10.1007/s11356-017-9912-6. PubMed DOI

Saratale R.G., Benelli G., Kumar G., Kim D.S., Saratale G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. 2018;25:10392–10406. doi: 10.1007/s11356-017-9581-5. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...