Eco-Friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by Bio-Based Karaya Gum-Chitosan Sponge

. 2021 Jan 13 ; 13 (2) : . [epub] 20210113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33451026

A novel, lightweight (8 mg/cm3), conjugate sponge of karaya gum (Kg) and chitosan (Ch) has been synthesized with very high porosity (~98%) and chemical stability, as a pH-responsive adsorbent material for the removal of anionic and cationic dyes from aqueous solutions. Experimental results showed that Kg-Ch conjugate sponge has good adsorption capacity for anionic dye methyl orange (MO: 32.81 mg/g) and cationic dye methylene blue (MB: 32.62 mg/g). The optimized Kg:Ch composition grants access to the free and pH-dependent ionizable functional groups on the surface of the sponge for the adsorption of dyes. The studies on the adsorption process as a function of pH, adsorbate concentration, adsorbent dose, and contact time indicated that the adsorption capacity of MB was decreased with increasing pH from 5 to 10 and external mass transfer together with intra-particle diffusion. The adsorption isotherm of the anionic dye MO was found to correlate with the Langmuir model (R2 = 0.99) while the adsorption of the cationic MB onto the sponge was better described by the Freundlich model (R2 = 0.99). Kinetic regression results specified that the adsorption kinetics were well represented by the pseudo-second-order model. The H-bonding, as well as electrostatic interaction between the polymers and the adsorption interactions of dyes onto Kg-Ch sponge from aqueous solutions, were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and the highly wrinkled porous morphology was visualized in depth by field-emission scanning electron microscopy (FE-SEM) analysis. Moreover, the samples could be reused without loss of contaminant removal capacity over six successive adsorption-desorption cycles. The hierarchical three-dimensional sponge-like structure of Kg has not been reported yet and this novel Kg-Ch sponge functions as a promising candidate for the uninterrupted application of organic pollutant removal from water.

Zobrazit více v PubMed

Ghorai S., Sarkar A., Raou M., Panda A.B., Scho H., Pal S. Enhanced Removal of Methylene Blue and Methyl Violet Dyes from Aqueous Solution Using a Nanocomposite of Hydrolyzed Polyacrylamide Grafted Xanthan Gum and Incorporated Nanosilica. ACS Appl. Mater. Interfaces. 2014;6:4766–4777. doi: 10.1021/am4055657. PubMed DOI

Blackburn R.S. Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. 2004;38:4905–4909. doi: 10.1021/es049972n. PubMed DOI

Vakili M., Zwain H.M., Mojiri A., Wang W., Gholami F., Gholami Z., Giwa A.S., Wang B., Cagnetta G., Salamatinia B. Effective Adsorption of Reactive Black 5 onto Hybrid Hexadecylamine Impregnated Chitosan-Powdered Activated Carbon Beads. Water. 2020;12:2242. doi: 10.3390/w12082242. DOI

Sekar S., Surianarayanan M., Ranganathan V., Macfarlane D.R., Mandal A.B. Choline-Based Ionic Liquids-Enhanced Biodegradation of Azo Dyes. Environ. Sci. Technol. 2012;46:4902–4908. doi: 10.1021/es204489h. PubMed DOI

Körbahti B.K., Artut K., Gec C., Özer A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. J. 2011;173:677–688. doi: 10.1016/j.cej.2011.02.018. DOI

Caldera Villalobos M., Peláez Cid A.A., Herrera González A.M. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups. J. Environ. Manag. 2016;177:65–73. doi: 10.1016/j.jenvman.2016.04.004. PubMed DOI

Polepalli S., Rao C.P. Drum Stick Seed Powder as Smart Material for Water Purification: Role of Moringa oleifera Coagulant Protein-Coated Copper Phosphate Nanoflowers for the Removal of Heavy Toxic Metal Ions and Oxidative Degradation of Dyes from Water. ACS Sustain. Chem. Eng. 2018;6:15634–15643. doi: 10.1021/acssuschemeng.8b04138. DOI

Tang C.-W. Study of degradation of photocatalytic methyl orange on Different Morphologies of ZnO Catalysts. Adv. Mater. Res. 2013;2:19–24. doi: 10.4028/www.scientific.net/AMR.873.19. DOI

Blachnio M., Budnyak T.M., Derylo-Marczewska A., Marczewski A.W., Tertykh V.A. Chitosan-Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions. Langmuir. 2018;34:2258–2273. doi: 10.1021/acs.langmuir.7b04076. PubMed DOI

Sharma J., Kaith B.S., Sharma A.K. Gum xanthan-psyllium-cl-poly (acrylic acid-co-itaconic acid) based adsorbent for e ff ective removal of cationic and anionic dyes: Adsorption isotherms, kinetics and thermodynamic studies. Ecotoxicol. Environ. Saf. 2018;149:150–158. PubMed

Shen X., Huang P., Li F., Wang X., Yuan T., Sun R. Compressive alginate sponge derived from seaweed biomass resources for methylene blue removal from wastewater. Polymers. 2019;11:961. doi: 10.3390/polym11060961. PubMed DOI PMC

Ghaedi M., Nazari E., Sahraie R., Purkait M.K. Kinetic and isotherm study of Bromothymol Blue and Methylene blue removal using Au-NP loaded on activated carbon. Desalin. Water Treat. 2014;52:5504–5512. doi: 10.1080/19443994.2013.822156. DOI

Li Y., Xiao H., Pan Y., Wang L. Novel Composite Adsorbent Consisting of Dissolved Cellulose Fiber/Microfibrillated Cellulose for Dye Removal from Aqueous Solution. ACS Sustain. Chem. Eng. 2018;6:6994–7002. doi: 10.1021/acssuschemeng.8b00829. DOI

Karoyo A.H., Dehabadi L., Wilson L.D. Renewable Starch Carriers with Switchable Adsorption Properties. ACS Sustain. Chem. Eng. 2018;6:4603–4613. doi: 10.1021/acssuschemeng.7b03345. DOI

Qin Y., Yang D., Qiu X. Hydroxypropyl Sulfonated Lignin as Dye Dispersant: Effect of Average Molecular Weight. ACS Sustain. Chem. Eng. 2015;3:3239–3244. doi: 10.1021/acssuschemeng.5b00821. DOI

Ayoub A., Venditti R.A., Pawlak J.J., Salam A., Hubbe M.A. Novel Hemicellulose—Chitosan Biosorbent for Water Desalination and Heavy Metal Removal. ACS Sustain. Chem. Eng. 2013;1:1102–1109. doi: 10.1021/sc300166m. DOI

Kean T., Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010;62:3–11. doi: 10.1016/j.addr.2009.09.004. PubMed DOI

Wang S., Peng X., Zhong L., Tan J., Jing S. An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J. Mater. Chem. A. 2015;3:8772–8781. doi: 10.1039/C4TA07057G. DOI

Salehizadeh H., Yan N., Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 2018;36:92–119. doi: 10.1016/j.biotechadv.2017.10.002. PubMed DOI

Padil V.V.T.T., Wacławek S., Černík M., Varma R.S., Miroslav Č., Varma R.S., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fi elds. Biotechnol. Adv. 2018;36:1984–2016. doi: 10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC

Wang L., Sánchez-soto M., Abt T. Properties of bio-based gum Arabic/clay aerogels. Ind. Crops Prod. 2016;91:15–21. doi: 10.1016/j.indcrop.2016.05.001. DOI

Costa M.P.M., Prates L.M., Baptista L., Cruz M.T.M., Ferreira I.L.M. Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study. Carbohydr. Polym. 2018;198:51–60. doi: 10.1016/j.carbpol.2018.06.052. PubMed DOI

Das B.P., Tsianou M. From polyelectrolyte complexes to polyelectrolyte multilayers: Electrostatic assembly, nanostructure, dynamics, and functional properties. Adv. Colloid Interface Sci. 2017;244:71–89. doi: 10.1016/j.cis.2016.12.004. PubMed DOI

Luo Y., Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 2014;64:353–367. doi: 10.1016/j.ijbiomac.2013.12.017. PubMed DOI

Kumar A., Ahuja M. Carboxymethyl gum kondagogu-chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2013;62:80–84. doi: 10.1016/j.ijbiomac.2013.08.035. PubMed DOI

Liu L., Zhang B., Zhang Y., He Y., Huang L., Tan S., Cai X. Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J. Chem. Eng. Data. 2015;60:1270–1278. doi: 10.1021/je5009312. DOI

Zhao L., Zou W., Zou L., He X., Song J., Han R. Adsorption of methylene blue and methyl orange from aqueous solution by iron oxide-coated zeolite in fi xed bed column: Predicted curves. Desalin. Water Treat. 2010;22:258–264. doi: 10.5004/dwt.2010.1807. DOI

Bidarakatte Krishnappa P., Badalamoole V. Karaya gum-graft-poly(2-(dimethylamino)ethyl methacrylate) gel: An efficient adsorbent for removal of ionic dyes from water. Int. J. Biol. Macromol. 2018;122:997–1007. doi: 10.1016/j.ijbiomac.2018.09.038. PubMed DOI

Mojiri A., Kazeroon R.A., Gholami A. Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: Optimization by the artificial neural network. Water. 2019;11:551. doi: 10.3390/w11030551. DOI

Brar V., Kaur G. Preparation and Characterization of Polyelectrolyte Complexes of Hibiscus esculentus (Okra) Gum and Chitosan. Int. J. Biomater. 2018;2018:4856287. doi: 10.1155/2018/4856287. PubMed DOI PMC

Padil V.V.T., Senan C., Černík M. Dodecenylsuccinic Anhydride Derivatives of Gum Karaya (Sterculia urens): Preparation, Characterization, and Their Antibacterial Properties. J. Agric. Food Chem. 2015;63:3757–3765. doi: 10.1021/jf505783e. PubMed DOI

Jiang S., Uch B., Agarwal S., Greiner A. Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges. ACS Appl. Mater. Interfaces. 2017;9:32308–32315. doi: 10.1021/acsami.7b11045. PubMed DOI

Pietrucha K., Safandowska M. Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem. 2015;50:2105–2111. doi: 10.1016/j.procbio.2015.09.025. DOI

Sakloetsakun D., Preechagoon D., Bernkop-schnu A., Pongjanyakul T. Chitosan-gum arabic polyelectrolyte complex films: Physicochemical, mechanical and mucoadhesive properties. Pharm. Dev. Technol. 2016;21:590–599. doi: 10.3109/10837450.2015.1035727. PubMed DOI

Kumar A., Ahuja M. Carboxymethyl gum kondagogu: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr. Polym. 2012;90:637–643. doi: 10.1016/j.carbpol.2012.05.089. PubMed DOI

Ghaffari A. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur. J. Pharm. Biopharm. 2007;67:175–186. doi: 10.1016/j.ejpb.2007.01.013. PubMed DOI

Dichiara A.B., Webber M.R., Gorman W.R., Rogers R.E. Removal of Copper Ions from Aqueous Solutions via Adsorption on Carbon Nanocomposites. ACS Appl. Mater. Interfaces. 2015;7:15674–15680. doi: 10.1021/acsami.5b04974. PubMed DOI

Ren X., Li J., Tan X., Wang X. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans. 2013;42:5266–5274. doi: 10.1039/c3dt32969k. PubMed DOI

Taylor P., Afroze S., Sen T.K., Ang M., Nishioka H. Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: Equilibrium, kinetics, thermodynamics and mechanism. Desalin. Water Treat. 2015;57:37–41.

Sen T.K., Afroze S., Ang H.M. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut. 2011;218:499–515. doi: 10.1007/s11270-010-0663-y. DOI

Vadivelan V., Vasanth Kumar K. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 2005;286:90–100. doi: 10.1016/j.jcis.2005.01.007. PubMed DOI

Ghodbane I., Hamdaoui O. Removal of mercury (II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. J. Hazard. Mater. 2008;160:301–309. doi: 10.1016/j.jhazmat.2008.02.116. PubMed DOI

Tan I.A.W., Ahmad A.L., Hameed B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008;154:337–346. doi: 10.1016/j.jhazmat.2007.10.031. PubMed DOI

Liu Q., Yu H., Zeng F., Li X., Sun J., Li C., Lin H., Su Z. HKUST-1 modified ultrastability cellulose / chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr. Polym. 2021;255:117402. doi: 10.1016/j.carbpol.2020.117402. PubMed DOI

Jiang R., Fu Y.-Q., Zhu H.-Y., Yao J., Xiao L. Removal of Methyl Orange from Aqueous Solutions by Magnetic Maghemite/Chitosan Nanocomposite Films: Adsorption Kinetics and Equilibrium. J. Appl. Polym. Sci. 2012;125:E540–E549. doi: 10.1002/app.37003. DOI

Ma Q., Shen F., Lu X., Bao W., Ma H. Studies on the adsorption behavior of methyl orange from dye wastewater onto activated clay. Desalin. Water Treat. 2013;51:3700–3709. doi: 10.1080/19443994.2013.782083. DOI

Fumba G., Essomba J.S., Tagne G.M., Nsami J.N., Désiré P., Bélibi B., Mbadcam J.K. Equilibrium and Kinetic Adsorption Studies of Methyl Orange from Aqueous Solutions Using Kaolinite, Metakaolinite and Activated Geopolymer as Low Cost Adsorbents. J. Acad. Ind. Res. 2014;3:156–163.

Zayed A.M., Abdel Wahed M.S.M., Mohamed E.A., Sillanpää M. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Appl. Clay Sci. 2018;166:49–60. doi: 10.1016/j.clay.2018.09.013. DOI

Fan J., Zhao Z., Liu W., Xue Y., Yin S. Solvothermal synthesis of different phase N-TiO2and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange. J. Colloid Interface Sci. 2016;470:229–236. doi: 10.1016/j.jcis.2016.02.045. PubMed DOI

Zhang Q., Hu X.M., Wu M.Y., Wang M.M., Zhao Y.Y., Li T.T. Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React. Funct. Polym. 2019;136:34–43. doi: 10.1016/j.reactfunctpolym.2019.01.002. DOI

Singha N.R., Mahapatra M., Karmakar M., Dutta A., Mondal H., Chattopadhyay P.K. Synthesis of guar gum-: G -(acrylic acid- co -acrylamide- co -3-acrylamido propanoic acid) IPN via in situ attachment of acrylamido propanoic acid for analyzing superadsorption mechanism of Pb(II)/Cd(II)/Cu(II)/MB/MV. Polym. Chem. 2017;8:6750–6777. doi: 10.1039/C7PY01564J. DOI

Jana S., Ray J., Bhanja S.K., Tripathy T. Removal of textile dyes from single and ternary solutions using poly(acrylamide-co-N-methylacrylamide) grafted katira gum hydrogel. J. Appl. Polym. Sci. 2018;135:1–20. doi: 10.1002/app.45958. DOI

Mokhtar A., Abdelkrim S., Djelad A., Sardi A., Boukoussa B., Sassi M., Bengueddach A. Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr. Polym. 2020;229:115399. doi: 10.1016/j.carbpol.2019.115399. PubMed DOI

Rahmi , Ismaturrahmi , Mustafa I. Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem. J. 2019;144:397–402. doi: 10.1016/j.microc.2018.09.032. DOI

Lian F., Zheng M., Chen M., Zhu Y., Zhang L., Zheng B. Modified xanthan gum for methyl orange uptake: Kinetic, isotherm, and thermodynamic behaviors. Int. J. Biol. Macromol. 2020;165:2442–2450. doi: 10.1016/j.ijbiomac.2020.10.147. PubMed DOI

Karthika J.S., Vishalakshi B. Novel stimuli responsive gellan gum-graft-poly (DMAEMA) hydrogel as adsorbent for anionic dye. Int. J. Biol. Macromol. 2015;81:648–655. doi: 10.1016/j.ijbiomac.2015.08.064. PubMed DOI

Preetha B.K., Badalamoole V. Modification of Karaya gum by graft copolymerization for effective removal of anionic dyes. Sep. Sci. Technol. 2019;54:2638–2652. doi: 10.1080/01496395.2018.1549079. DOI

Zhao P., Zhang R., Wang J. Adsorption of methyl orange from aqueous solution using chitosan/diatomite composite. Water Sci. Technol. 2017;75:1633–1642. doi: 10.2166/wst.2017.034. PubMed DOI

Jiang Y., Liu B., Xu J., Pan K., Hou H., Hu J., Yang J. Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydr. Polym. 2018;182:106–114. doi: 10.1016/j.carbpol.2017.10.097. PubMed DOI

Makhado E., Pandey S., Nomngongo P.N., Ramontja J. Preparation and characterization of xanthan gum-cl-poly (acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J. Colloid Interface Sci. 2018;513:700–714. doi: 10.1016/j.jcis.2017.11.060. PubMed DOI

Han S., Sun Q., Zheng H., Li J., Jin C. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr. Polym. 2016;136:95–100. doi: 10.1016/j.carbpol.2015.09.024. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...