Eco-Friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by Bio-Based Karaya Gum-Chitosan Sponge
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33451026
PubMed Central
PMC7828559
DOI
10.3390/polym13020251
PII: polym13020251
Knihovny.cz E-zdroje
- Klíčová slova
- anionic-cationic dye removal, chitosan, conjugate sponge, karaya gum, sustainable materials, waste-water treatment,
- Publikační typ
- časopisecké články MeSH
A novel, lightweight (8 mg/cm3), conjugate sponge of karaya gum (Kg) and chitosan (Ch) has been synthesized with very high porosity (~98%) and chemical stability, as a pH-responsive adsorbent material for the removal of anionic and cationic dyes from aqueous solutions. Experimental results showed that Kg-Ch conjugate sponge has good adsorption capacity for anionic dye methyl orange (MO: 32.81 mg/g) and cationic dye methylene blue (MB: 32.62 mg/g). The optimized Kg:Ch composition grants access to the free and pH-dependent ionizable functional groups on the surface of the sponge for the adsorption of dyes. The studies on the adsorption process as a function of pH, adsorbate concentration, adsorbent dose, and contact time indicated that the adsorption capacity of MB was decreased with increasing pH from 5 to 10 and external mass transfer together with intra-particle diffusion. The adsorption isotherm of the anionic dye MO was found to correlate with the Langmuir model (R2 = 0.99) while the adsorption of the cationic MB onto the sponge was better described by the Freundlich model (R2 = 0.99). Kinetic regression results specified that the adsorption kinetics were well represented by the pseudo-second-order model. The H-bonding, as well as electrostatic interaction between the polymers and the adsorption interactions of dyes onto Kg-Ch sponge from aqueous solutions, were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and the highly wrinkled porous morphology was visualized in depth by field-emission scanning electron microscopy (FE-SEM) analysis. Moreover, the samples could be reused without loss of contaminant removal capacity over six successive adsorption-desorption cycles. The hierarchical three-dimensional sponge-like structure of Kg has not been reported yet and this novel Kg-Ch sponge functions as a promising candidate for the uninterrupted application of organic pollutant removal from water.
Zobrazit více v PubMed
Ghorai S., Sarkar A., Raou M., Panda A.B., Scho H., Pal S. Enhanced Removal of Methylene Blue and Methyl Violet Dyes from Aqueous Solution Using a Nanocomposite of Hydrolyzed Polyacrylamide Grafted Xanthan Gum and Incorporated Nanosilica. ACS Appl. Mater. Interfaces. 2014;6:4766–4777. doi: 10.1021/am4055657. PubMed DOI
Blackburn R.S. Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. 2004;38:4905–4909. doi: 10.1021/es049972n. PubMed DOI
Vakili M., Zwain H.M., Mojiri A., Wang W., Gholami F., Gholami Z., Giwa A.S., Wang B., Cagnetta G., Salamatinia B. Effective Adsorption of Reactive Black 5 onto Hybrid Hexadecylamine Impregnated Chitosan-Powdered Activated Carbon Beads. Water. 2020;12:2242. doi: 10.3390/w12082242. DOI
Sekar S., Surianarayanan M., Ranganathan V., Macfarlane D.R., Mandal A.B. Choline-Based Ionic Liquids-Enhanced Biodegradation of Azo Dyes. Environ. Sci. Technol. 2012;46:4902–4908. doi: 10.1021/es204489h. PubMed DOI
Körbahti B.K., Artut K., Gec C., Özer A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. J. 2011;173:677–688. doi: 10.1016/j.cej.2011.02.018. DOI
Caldera Villalobos M., Peláez Cid A.A., Herrera González A.M. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups. J. Environ. Manag. 2016;177:65–73. doi: 10.1016/j.jenvman.2016.04.004. PubMed DOI
Polepalli S., Rao C.P. Drum Stick Seed Powder as Smart Material for Water Purification: Role of Moringa oleifera Coagulant Protein-Coated Copper Phosphate Nanoflowers for the Removal of Heavy Toxic Metal Ions and Oxidative Degradation of Dyes from Water. ACS Sustain. Chem. Eng. 2018;6:15634–15643. doi: 10.1021/acssuschemeng.8b04138. DOI
Tang C.-W. Study of degradation of photocatalytic methyl orange on Different Morphologies of ZnO Catalysts. Adv. Mater. Res. 2013;2:19–24. doi: 10.4028/www.scientific.net/AMR.873.19. DOI
Blachnio M., Budnyak T.M., Derylo-Marczewska A., Marczewski A.W., Tertykh V.A. Chitosan-Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions. Langmuir. 2018;34:2258–2273. doi: 10.1021/acs.langmuir.7b04076. PubMed DOI
Sharma J., Kaith B.S., Sharma A.K. Gum xanthan-psyllium-cl-poly (acrylic acid-co-itaconic acid) based adsorbent for e ff ective removal of cationic and anionic dyes: Adsorption isotherms, kinetics and thermodynamic studies. Ecotoxicol. Environ. Saf. 2018;149:150–158. PubMed
Shen X., Huang P., Li F., Wang X., Yuan T., Sun R. Compressive alginate sponge derived from seaweed biomass resources for methylene blue removal from wastewater. Polymers. 2019;11:961. doi: 10.3390/polym11060961. PubMed DOI PMC
Ghaedi M., Nazari E., Sahraie R., Purkait M.K. Kinetic and isotherm study of Bromothymol Blue and Methylene blue removal using Au-NP loaded on activated carbon. Desalin. Water Treat. 2014;52:5504–5512. doi: 10.1080/19443994.2013.822156. DOI
Li Y., Xiao H., Pan Y., Wang L. Novel Composite Adsorbent Consisting of Dissolved Cellulose Fiber/Microfibrillated Cellulose for Dye Removal from Aqueous Solution. ACS Sustain. Chem. Eng. 2018;6:6994–7002. doi: 10.1021/acssuschemeng.8b00829. DOI
Karoyo A.H., Dehabadi L., Wilson L.D. Renewable Starch Carriers with Switchable Adsorption Properties. ACS Sustain. Chem. Eng. 2018;6:4603–4613. doi: 10.1021/acssuschemeng.7b03345. DOI
Qin Y., Yang D., Qiu X. Hydroxypropyl Sulfonated Lignin as Dye Dispersant: Effect of Average Molecular Weight. ACS Sustain. Chem. Eng. 2015;3:3239–3244. doi: 10.1021/acssuschemeng.5b00821. DOI
Ayoub A., Venditti R.A., Pawlak J.J., Salam A., Hubbe M.A. Novel Hemicellulose—Chitosan Biosorbent for Water Desalination and Heavy Metal Removal. ACS Sustain. Chem. Eng. 2013;1:1102–1109. doi: 10.1021/sc300166m. DOI
Kean T., Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010;62:3–11. doi: 10.1016/j.addr.2009.09.004. PubMed DOI
Wang S., Peng X., Zhong L., Tan J., Jing S. An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J. Mater. Chem. A. 2015;3:8772–8781. doi: 10.1039/C4TA07057G. DOI
Salehizadeh H., Yan N., Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 2018;36:92–119. doi: 10.1016/j.biotechadv.2017.10.002. PubMed DOI
Padil V.V.T.T., Wacławek S., Černík M., Varma R.S., Miroslav Č., Varma R.S., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fi elds. Biotechnol. Adv. 2018;36:1984–2016. doi: 10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC
Wang L., Sánchez-soto M., Abt T. Properties of bio-based gum Arabic/clay aerogels. Ind. Crops Prod. 2016;91:15–21. doi: 10.1016/j.indcrop.2016.05.001. DOI
Costa M.P.M., Prates L.M., Baptista L., Cruz M.T.M., Ferreira I.L.M. Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study. Carbohydr. Polym. 2018;198:51–60. doi: 10.1016/j.carbpol.2018.06.052. PubMed DOI
Das B.P., Tsianou M. From polyelectrolyte complexes to polyelectrolyte multilayers: Electrostatic assembly, nanostructure, dynamics, and functional properties. Adv. Colloid Interface Sci. 2017;244:71–89. doi: 10.1016/j.cis.2016.12.004. PubMed DOI
Luo Y., Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 2014;64:353–367. doi: 10.1016/j.ijbiomac.2013.12.017. PubMed DOI
Kumar A., Ahuja M. Carboxymethyl gum kondagogu-chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2013;62:80–84. doi: 10.1016/j.ijbiomac.2013.08.035. PubMed DOI
Liu L., Zhang B., Zhang Y., He Y., Huang L., Tan S., Cai X. Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J. Chem. Eng. Data. 2015;60:1270–1278. doi: 10.1021/je5009312. DOI
Zhao L., Zou W., Zou L., He X., Song J., Han R. Adsorption of methylene blue and methyl orange from aqueous solution by iron oxide-coated zeolite in fi xed bed column: Predicted curves. Desalin. Water Treat. 2010;22:258–264. doi: 10.5004/dwt.2010.1807. DOI
Bidarakatte Krishnappa P., Badalamoole V. Karaya gum-graft-poly(2-(dimethylamino)ethyl methacrylate) gel: An efficient adsorbent for removal of ionic dyes from water. Int. J. Biol. Macromol. 2018;122:997–1007. doi: 10.1016/j.ijbiomac.2018.09.038. PubMed DOI
Mojiri A., Kazeroon R.A., Gholami A. Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: Optimization by the artificial neural network. Water. 2019;11:551. doi: 10.3390/w11030551. DOI
Brar V., Kaur G. Preparation and Characterization of Polyelectrolyte Complexes of Hibiscus esculentus (Okra) Gum and Chitosan. Int. J. Biomater. 2018;2018:4856287. doi: 10.1155/2018/4856287. PubMed DOI PMC
Padil V.V.T., Senan C., Černík M. Dodecenylsuccinic Anhydride Derivatives of Gum Karaya (Sterculia urens): Preparation, Characterization, and Their Antibacterial Properties. J. Agric. Food Chem. 2015;63:3757–3765. doi: 10.1021/jf505783e. PubMed DOI
Jiang S., Uch B., Agarwal S., Greiner A. Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges. ACS Appl. Mater. Interfaces. 2017;9:32308–32315. doi: 10.1021/acsami.7b11045. PubMed DOI
Pietrucha K., Safandowska M. Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem. 2015;50:2105–2111. doi: 10.1016/j.procbio.2015.09.025. DOI
Sakloetsakun D., Preechagoon D., Bernkop-schnu A., Pongjanyakul T. Chitosan-gum arabic polyelectrolyte complex films: Physicochemical, mechanical and mucoadhesive properties. Pharm. Dev. Technol. 2016;21:590–599. doi: 10.3109/10837450.2015.1035727. PubMed DOI
Kumar A., Ahuja M. Carboxymethyl gum kondagogu: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr. Polym. 2012;90:637–643. doi: 10.1016/j.carbpol.2012.05.089. PubMed DOI
Ghaffari A. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur. J. Pharm. Biopharm. 2007;67:175–186. doi: 10.1016/j.ejpb.2007.01.013. PubMed DOI
Dichiara A.B., Webber M.R., Gorman W.R., Rogers R.E. Removal of Copper Ions from Aqueous Solutions via Adsorption on Carbon Nanocomposites. ACS Appl. Mater. Interfaces. 2015;7:15674–15680. doi: 10.1021/acsami.5b04974. PubMed DOI
Ren X., Li J., Tan X., Wang X. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans. 2013;42:5266–5274. doi: 10.1039/c3dt32969k. PubMed DOI
Taylor P., Afroze S., Sen T.K., Ang M., Nishioka H. Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: Equilibrium, kinetics, thermodynamics and mechanism. Desalin. Water Treat. 2015;57:37–41.
Sen T.K., Afroze S., Ang H.M. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut. 2011;218:499–515. doi: 10.1007/s11270-010-0663-y. DOI
Vadivelan V., Vasanth Kumar K. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 2005;286:90–100. doi: 10.1016/j.jcis.2005.01.007. PubMed DOI
Ghodbane I., Hamdaoui O. Removal of mercury (II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. J. Hazard. Mater. 2008;160:301–309. doi: 10.1016/j.jhazmat.2008.02.116. PubMed DOI
Tan I.A.W., Ahmad A.L., Hameed B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008;154:337–346. doi: 10.1016/j.jhazmat.2007.10.031. PubMed DOI
Liu Q., Yu H., Zeng F., Li X., Sun J., Li C., Lin H., Su Z. HKUST-1 modified ultrastability cellulose / chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr. Polym. 2021;255:117402. doi: 10.1016/j.carbpol.2020.117402. PubMed DOI
Jiang R., Fu Y.-Q., Zhu H.-Y., Yao J., Xiao L. Removal of Methyl Orange from Aqueous Solutions by Magnetic Maghemite/Chitosan Nanocomposite Films: Adsorption Kinetics and Equilibrium. J. Appl. Polym. Sci. 2012;125:E540–E549. doi: 10.1002/app.37003. DOI
Ma Q., Shen F., Lu X., Bao W., Ma H. Studies on the adsorption behavior of methyl orange from dye wastewater onto activated clay. Desalin. Water Treat. 2013;51:3700–3709. doi: 10.1080/19443994.2013.782083. DOI
Fumba G., Essomba J.S., Tagne G.M., Nsami J.N., Désiré P., Bélibi B., Mbadcam J.K. Equilibrium and Kinetic Adsorption Studies of Methyl Orange from Aqueous Solutions Using Kaolinite, Metakaolinite and Activated Geopolymer as Low Cost Adsorbents. J. Acad. Ind. Res. 2014;3:156–163.
Zayed A.M., Abdel Wahed M.S.M., Mohamed E.A., Sillanpää M. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Appl. Clay Sci. 2018;166:49–60. doi: 10.1016/j.clay.2018.09.013. DOI
Fan J., Zhao Z., Liu W., Xue Y., Yin S. Solvothermal synthesis of different phase N-TiO2and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange. J. Colloid Interface Sci. 2016;470:229–236. doi: 10.1016/j.jcis.2016.02.045. PubMed DOI
Zhang Q., Hu X.M., Wu M.Y., Wang M.M., Zhao Y.Y., Li T.T. Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React. Funct. Polym. 2019;136:34–43. doi: 10.1016/j.reactfunctpolym.2019.01.002. DOI
Singha N.R., Mahapatra M., Karmakar M., Dutta A., Mondal H., Chattopadhyay P.K. Synthesis of guar gum-: G -(acrylic acid- co -acrylamide- co -3-acrylamido propanoic acid) IPN via in situ attachment of acrylamido propanoic acid for analyzing superadsorption mechanism of Pb(II)/Cd(II)/Cu(II)/MB/MV. Polym. Chem. 2017;8:6750–6777. doi: 10.1039/C7PY01564J. DOI
Jana S., Ray J., Bhanja S.K., Tripathy T. Removal of textile dyes from single and ternary solutions using poly(acrylamide-co-N-methylacrylamide) grafted katira gum hydrogel. J. Appl. Polym. Sci. 2018;135:1–20. doi: 10.1002/app.45958. DOI
Mokhtar A., Abdelkrim S., Djelad A., Sardi A., Boukoussa B., Sassi M., Bengueddach A. Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr. Polym. 2020;229:115399. doi: 10.1016/j.carbpol.2019.115399. PubMed DOI
Rahmi , Ismaturrahmi , Mustafa I. Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem. J. 2019;144:397–402. doi: 10.1016/j.microc.2018.09.032. DOI
Lian F., Zheng M., Chen M., Zhu Y., Zhang L., Zheng B. Modified xanthan gum for methyl orange uptake: Kinetic, isotherm, and thermodynamic behaviors. Int. J. Biol. Macromol. 2020;165:2442–2450. doi: 10.1016/j.ijbiomac.2020.10.147. PubMed DOI
Karthika J.S., Vishalakshi B. Novel stimuli responsive gellan gum-graft-poly (DMAEMA) hydrogel as adsorbent for anionic dye. Int. J. Biol. Macromol. 2015;81:648–655. doi: 10.1016/j.ijbiomac.2015.08.064. PubMed DOI
Preetha B.K., Badalamoole V. Modification of Karaya gum by graft copolymerization for effective removal of anionic dyes. Sep. Sci. Technol. 2019;54:2638–2652. doi: 10.1080/01496395.2018.1549079. DOI
Zhao P., Zhang R., Wang J. Adsorption of methyl orange from aqueous solution using chitosan/diatomite composite. Water Sci. Technol. 2017;75:1633–1642. doi: 10.2166/wst.2017.034. PubMed DOI
Jiang Y., Liu B., Xu J., Pan K., Hou H., Hu J., Yang J. Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydr. Polym. 2018;182:106–114. doi: 10.1016/j.carbpol.2017.10.097. PubMed DOI
Makhado E., Pandey S., Nomngongo P.N., Ramontja J. Preparation and characterization of xanthan gum-cl-poly (acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J. Colloid Interface Sci. 2018;513:700–714. doi: 10.1016/j.jcis.2017.11.060. PubMed DOI
Han S., Sun Q., Zheng H., Li J., Jin C. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr. Polym. 2016;136:95–100. doi: 10.1016/j.carbpol.2015.09.024. PubMed DOI