Comparison of Smoothing Filters' Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain-Computer Interface Headset during Audio Stimulation

. 2021 Jan 13 ; 11 (1) : . [epub] 20210113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33451080

Grantová podpora
Project No. 296 SP2020/156 Ministry of Education of the Czech Republic

Off-the-shelf, consumer-grade EEG equipment is nowadays becoming the first-choice equipment for many scientists when it comes to recording brain waves for research purposes. On one hand, this is perfectly understandable due to its availability and relatively low cost (especially in comparison to some clinical-level EEG devices), but, on the other hand, quality of the recorded signals is gradually increasing and reaching levels that were offered just a few years ago by much more expensive devices used in medicine for diagnostic purposes. In many cases, a well-designed filter and/or a well-thought signal acquisition method improve the signal quality to the level that it becomes good enough to become subject of further analysis allowing to formulate some valid scientific theories and draw far-fetched conclusions related to human brain operation. In this paper, we propose a smoothing filter based upon the Savitzky-Golay filter for the purpose of EEG signal filtering. Additionally, we provide a summary and comparison of the applied filter to some other approaches to EEG data filtering. All the analyzed signals were acquired from subjects performing visually involving high-concentration tasks with audio stimuli using Emotiv EPOC Flex equipment.

Zobrazit více v PubMed

Jebelli H., Hwang S., Lee S. EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device. J. Comput. Civ. Eng. 2018;32:04017070. doi: 10.1061/(ASCE)CP.1943-5487.0000719. DOI

Al-Shargie F., Kiguchi M., Badruddin N., Dass S.C., Hani A.F.M., Tang T.B. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express. 2016;7:3882–3898. doi: 10.1364/BOE.7.003882. PubMed DOI PMC

Kaur B., Singh D., Roy P.P. EEG based emotion classification mechanism in BCI. Procedia Comput. Sci. 2018;132:752–758. doi: 10.1016/j.procs.2018.05.087. DOI

Jatupaiboon N., Pan-ngum S., Israsena P. Real-time EEG-based happiness detection system. Sci. World J. 2013;2013:618649. doi: 10.1155/2013/618649. PubMed DOI PMC

Al-Shargie F., Tang T.B., Badruddin N., Kiguchi M. Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Med. Biol. Eng. Comput. 2018;56:125–136. PubMed

Namazi H. Information-Based Classification of Electroencephalography (EEG) Signals for Healthy Adolescents and Adolescents with Symptoms of Schizophrenia. Fluct. Noise Lett. 2020:2050033. doi: 10.1142/S0219477520500339. PubMed DOI

Emotiv Emotiv Flex Website. [(accessed on 28 October 2020)];2020 Available online: https://www.emotiv.com/epoc-flex.

Sawangjai P., Hompoonsup S., Leelaarporn P., Kongwudhikunakorn S., Wilaiprasitporn T. Consumer grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sens. J. 2019;20:3996–4024. doi: 10.1109/JSEN.2019.2962874. DOI

Kawala-Janik A., Pelc M., Podpora M. Method for EEG signals pattern recognition in embedded systems. Elektron. Elektrotechnika. 2015;21:3–9. doi: 10.5755/j01.eee.21.3.9918. DOI

Kawala-Sterniuk A., Podpora M., Pelc M., Blaszczyszyn M., Gorzelanczyk E.J., Martinek R., Ozana S. Comparison of smoothing filters in analysis of EEG data for the medical diagnostics purposes. Sensors. 2020;20:807. doi: 10.3390/s20030807. PubMed DOI PMC

Cimtay Y., Ekmekcioglu E. Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition. Sensors. 2020;20:2034. doi: 10.3390/s20072034. PubMed DOI PMC

Kurapa A., Rathore D., Edla D.R., Bablani A., Kuppili V. A Hybrid Approach for Extracting EMG signals by Filtering EEG Data for IoT Applications for Immobile Persons. Wirel. Pers. Commun. 2020;114:3081–3101. doi: 10.1007/s11277-020-07518-5. DOI

Epstein R. The empty brain. Aeon May. 2016;18:2016.

Hassan M.A., Rizvi Q.M. Computer Vs Human Brain: An Analytical Approach and Overview. Computer. 2019;6:580–583.

Kawala-Janik A. Ph.D. Thesis. University of Greenwich; London, UK: 2013. Efficiency Evaluation of External Environments Control Using Bio-Signals.

Stach T.N., Kawala-Janik A. Initial Study on Using Emotiv EPOC+ Neuroheadset as a Control Device for Picture Script-Based Communicators. IFAC-PapersOnLine. 2018;51:180–184. doi: 10.1016/j.ifacol.2018.07.150. DOI

Browarska N., Stach T. System to Communicate Disabled People with Environment Using Brain-Computer Interfaces; Proceedings of the International Scientific Conference BCI 2018 Opole; Opole, Poland. 13–14 March 2018; pp. 150–157.

Cherng F.Y., Lee Y.C., King J.T., Lin W.C. Measuring the Influences of Musical Parameters on Cognitive and Behavioral Responses to Audio Notifications Using EEG and Large-scale Online Studies; Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems; Scotland, UK. 4–9 May 2019; pp. 1–12.

Sakharov D., Davydov V., Pavlygina R. Intercentral relations of the human EEG during listening to music. Hum. Physiol. 2005;31:392–397. doi: 10.1007/s10747-005-0065-5. PubMed DOI

Dey A., Palit S.K., Bhattacharya D., Tibarewala D., Das D. Study of the effect of music on central nervous system through long term analysis of EEG signal in time domain. Int. J. Eng. Sci. Emerg. Technol. 2013;5:59–67.

Bitner M.J. Servicescapes: The impact of physical surroundings on customers and employees. J. Mark. 1992;56:57–71. doi: 10.1177/002224299205600205. DOI

Koelsch S., Siebel W.A. Towards a neural basis of music perception. Trends Cogn. Sci. 2005;9:578–584. doi: 10.1016/j.tics.2005.10.001. PubMed DOI

Koelsch S. Music That Works. Springer; Berlin/Heidelberg, Germany: 2009. Neural substrates of processing syntax and semantics in music; pp. 143–153. PubMed

Herrmann C.S., Grigutsch M., Busch N.A. Event-Related Potentials: A Methods Handbook. The MIT Press; Cambridge, MA, USA: 2005. 11 EEG oscillations and wavelet analysis; p. 229.

Teplan M., Krakovska A., Štolc S. EEG responses to long-term audio—Visual stimulation. Int. J. Psychophysiol. 2006;59:81–90. doi: 10.1016/j.ijpsycho.2005.02.005. PubMed DOI

Sasaki M., Iversen J., Callan D.E. Music Improvisation is Characterized by Brain Related Increased Beta Band EEG. Front. Hum. Neurosci. 2019;13:435. doi: 10.3389/fnhum.2019.00435. PubMed DOI PMC

Spironelli C., Angrilli A. EEG delta band as a marker of brain damage in aphasic patients after recovery of language. Neuropsychologia. 2009;47:988–994. doi: 10.1016/j.neuropsychologia.2008.10.019. PubMed DOI

Kołodziej M., Majkowski A., Rak R. A new method of feature extraction from EEG signal for brain-computer interface design. Przegląd Elektrotechniczny. 2010;86:35–38.

Bekkedal M.Y., Rossi J., III, Panksepp J. Human brain EEG indices of emotions: Delineating responses to affective vocalizations by measuring frontal theta event-related synchronization. Neurosci. Biobehav. Rev. 2011;35:1959–1970. doi: 10.1016/j.neubiorev.2011.05.001. PubMed DOI

Alarcao S.M., Fonseca M.J. Emotions recognition using EEG signals: A survey. IEEE Trans. Affect. Comput. 2017;10:374–393. doi: 10.1109/TAFFC.2017.2714671. DOI

Zhuang N., Zeng Y., Tong L., Zhang C., Zhang H., Yan B. Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed. Res. Int. 2017;2017 doi: 10.1155/2017/8317357. PubMed DOI PMC

van Lier H., Drinkenburg W.H., Van Eeten Y.J., Coenen A.M. Effects of diazepam and zolpidem on EEG beta frequencies are behavior-specific in rats. Neuropharmacology. 2004;47:163–174. doi: 10.1016/j.neuropharm.2004.03.017. PubMed DOI

Yoshimura M., Koenig T., Irisawa S., Isotani T., Yamada K., Kikuchi M., Okugawa G., Yagyu T., Kinoshita T., Strik W., et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology. 2007;191:995–1004. doi: 10.1007/s00213-007-0737-8. PubMed DOI

Jaušovec N., Jaušovec K., Gerlič I. Differences in event-related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neurosci. Lett. 2001;311:93–96. doi: 10.1016/S0304-3940(01)02141-3. PubMed DOI

Zieliński T.P. Cyfrowe Przetwarzanie Sygnałów: Od Teorii Do Zastosowań. Wydawnictwa Komunikacji ączności; Warszawa, Poland: 2005.

Williams N.S., McArthur G.M., de Wit B., Ibrahim G., Badcock N.A. A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ. 2020;8:e9713. doi: 10.7717/peerj.9713. PubMed DOI PMC

Alotaiby T., Abd El-Samie F.E., Alshebeili S.A., Ahmad I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015;2015:66. doi: 10.1186/s13634-015-0251-9. DOI

Kwon J., Shin J., Im C.H. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels. PLoS ONE. 2020;15:e0230491. doi: 10.1371/journal.pone.0230491. PubMed DOI PMC

Gurve D., Delisle-Rodriguez D., Romero-Laiseca M., Cardoso V., Loterio F., Bastos T., Krishnan S. Subject-specific eeg channel selection using non-negative matrix factorization for lower-limb motor imagery recognition. J. Neural Eng. 2020;17:026029. doi: 10.1088/1741-2552/ab4dba. PubMed DOI

Ge Q., Lin Z.C., Gao Y.X., Zhang J.X. A Robust Discriminant Framework Based on Functional Biomarkers of EEG and Its Potential for Diagnosis of Alzheimer’s Disease. Healthcare. 2020;8:476. doi: 10.3390/healthcare8040476. PubMed DOI PMC

Fernandez-Blanco E., Rivero D., Pazos A. Convolutional neural networks for sleep stage scoring on a two-channel EEG signal. Soft Comput. 2020;24:4067–4079. doi: 10.1007/s00500-019-04174-1. DOI

Xu M., Qi H., Ma L., Sun C., Zhang L., Wan B., Yin T., Ming D. Channel selection based on phase measurement in P300-based brain-computer interface. PLoS ONE. 2013;8:e60608. doi: 10.1371/journal.pone.0060608. PubMed DOI PMC

Krusienski D.J., Sellers E.W., McFarland D.J., Vaughan T.M., Wolpaw J.R. Toward enhanced P300 speller performance. J. Neurosci. Methods. 2008;167:15–21. doi: 10.1016/j.jneumeth.2007.07.017. PubMed DOI PMC

Liu Y., Zhou Z., Hu D. Gaze independent brain—Computer speller with covert visual search tasks. Clin. Neurophysiol. 2011;122:1127–1136. doi: 10.1016/j.clinph.2010.10.049. PubMed DOI

Xue J.Z., Zhang H., Zheng C.X., Yan X.G. Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693) Volume 1. IEEE; Piscataway, PA, USA: 2003. Wavelet packet transform for feature extraction of EEG during mental tasks; pp. 360–363.

Mahato S., Goyal N., Ram D., Paul S. Detection of Depression and Scaling of Severity Using Six Channel EEG Data. J. Med. Syst. 2020;44:1–12. doi: 10.1007/s10916-020-01573-y. PubMed DOI

Picard R.W., Vyzas E., Healey J. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 2001;23:1175–1191. doi: 10.1109/34.954607. DOI

Browarska N., Kawala-Sterniuk A., Chechelski P., Zygarlicki J. Analysis of brain waves changes in stressful situations based on horror game with the implementation of virtual reality and brain-computer interface system: A case study. Bio-Algorithms Med.-Syst. 2020;1 doi: 10.1515/bams-2020-0050. DOI

Wang C.M., Xiao W.C. Applied Mechanics and Materials. Volume 347. Trans Tech Publ.; Stafa-Zurich, Switzerland: 2013. Second-order IIR Notch Filter Design and implementation of digital signal processing system; pp. 729–732.

Li S., Zhou W., Yuan Q., Liu Y. Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2013;21:880–886. doi: 10.1109/TNSRE.2013.2282153. PubMed DOI

Srinivasan R., Nunez P.L., Tucker D.M., Silberstein R.B., Cadusch P.J. Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials. Brain Topogr. 1996;8:355–366. doi: 10.1007/BF01186911. PubMed DOI

Jadav G.M., Lerga J., Štajduhar I. Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local entropy. EURASIP J. Adv. Signal Process. 2020;2020:1–18.

Issa S., Peng Q., You X. Emotion Classification Using EEG Brain Signals and the Broad Learning System. IEEE Trans. Syst. Man Cybern. Syst. 2020 doi: 10.1109/TSMC.2020.2969686. DOI

Gupta G.S., Bhatnagar M., Kumar S., Sinha R.K. A comparative study of application of different non-conventional filters on electroencephalogram. Biomed. Res. (0970-938X) 2020;31:1–9.

Grzechca D., Szczeponik A. Comparison of Filtering Methods for Enhanced Reliability of a Train Axle Counter System. Sensors. 2020;20:2754. doi: 10.3390/s20102754. PubMed DOI PMC

Schafer R.W. What is a Savitzky-Golay filter?[lecture notes] IEEE Signal Process. Mag. 2011;28:111–117. doi: 10.1109/MSP.2011.941097. DOI

Acabchuk R.L., Simon M.A., Low S., Brisson J.M., Johnson B.T. Measuring Meditation Progress with a Consumer-Grade EEG Device: Caution from a Randomized Controlled Trial. Mindfulness. 2020:1–14. doi: 10.1007/s12671-020-01497-1. DOI

Ratti E., Waninger S., Berka C., Ruffini G., Verma A. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front. Hum. Neurosci. 2017;11:398. doi: 10.3389/fnhum.2017.00398. PubMed DOI PMC

Maskeliunas R., Damasevicius R., Martisius I., Vasiljevas M. Consumer-grade EEG devices: Are they usable for control tasks? PeerJ. 2016;4:e1746. doi: 10.7717/peerj.1746. PubMed DOI PMC

Browarska N., Kawala-Sterniuk A., Zygarlicki J. Initial study on changes in activity of brain waves during audio stimulation using noninvasive brain—Computer interfaces: Choosing the appropriate filtering method. Bio-Algorithms Med.-Syst. 2020;1 doi: 10.1515/bams-2020-0051. DOI

Diker A., Avci E., Tanyildizi E., Gedikpinar M. A novel ECG signal classification method using DEA-ELM. Med. Hypotheses. 2020;136:109515. doi: 10.1016/j.mehy.2019.109515. PubMed DOI

Rahman M.A., Haque M.M., Anjum A., Mollah M.N., Ahmad M. Proceedings of International Joint Conference on Computational Intelligence. Springer; Berlin/Heidelberg, Germany: 2020. Classification of motor imagery events from prefrontal hemodynamics for BCI application; pp. 11–23.

Yadava M., Kumar P., Saini R., Roy P.P., Dogra D.P. Analysis of EEG signals and its application to neuromarketing. Multimed. Tools Appl. 2017;76:19087–19111. doi: 10.1007/s11042-017-4580-6. DOI

Acharya D., Rani A., Agarwal S., Singh V. Application of adaptive Savitzky–Golay filter for EEG signal processing. Perspect. Sci. 2016;8:677–679. doi: 10.1016/j.pisc.2016.06.056. DOI

Agarwal S., Rani A., Singh V., Mittal A.P. EEG signal enhancement using cascaded S-Golay filter. Biomed. Signal Process. Control. 2017;36:194–204. doi: 10.1016/j.bspc.2017.04.004. DOI

Khng K.H., Mane R. Beyond BCI—Validating a wireless, consumer-grade EEG headset against a medical-grade system for evaluating EEG effects of a test anxiety intervention in school. Adv. Eng. Inf. 2020;45:101106. doi: 10.1016/j.aei.2020.101106. DOI

Kawala-Sterniuk A., Browarska N., Al-Bakri A.F., Pelc M., Zygarlicki J., Sidikova M., Martinek R., Gorzelanczyk E.J. Summary of over Fifty Years with Brain-Computer Interfaces–A Review. Brain Sci. 2021;1 in press. PubMed PMC

Gorzelańczyk E.J., Podlipniak P., Walecki P., Karpiński M., Tarnowska E. Pitch Syntax violations are linked to greater skin conductance changes, relative to timbral violations—The predictive role of the reward system in perspective of cortico—Subcortical loops. Front. Psychol. 2017;8:586. doi: 10.3389/fpsyg.2017.00586. PubMed DOI PMC

Shuaib H., Anthony R.J., Pelc M. A Framework for Certifying Autonomic Computing Systems. Curran Associates Inc.; Red Hook, NY, USA: 2012.

Schembri P., Pelc M., Ma J. Comparison between a Passive and Active response task and their effect on the Amplitude and Latency of the P300 component for Visual Stimuli while using Low Fidelity Equipment; Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Berlin, Germany. 23–27 July 2019; pp. 4566–4571. PubMed

Pelc M., Galus D., Zolubak M., Ozana S., Chlewicki W., Cichon K., Podpora M., Kawala-Sterniuk A. Behavioural Approach to Network Anomaly Detection for Resource-Constrained System—Presentation of the Novel Solution–Preliminary Study. IFAC-PapersOnLine. 2019;52:121–126. doi: 10.1016/j.ifacol.2019.12.743. DOI

Nguyen T., Khosravi A., Creighton D., Nahavandi S. EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Expert Syst. Appl. 2015;42:4370–4380. doi: 10.1016/j.eswa.2015.01.036. DOI

Herman P.A., Prasad G., McGinnity T.M. Designing an interval type-2 fuzzy logic system for handling uncertainty effects in brain—Computer interface classification of motor imagery induced EEG patterns. IEEE Trans. Fuzzy Syst. 2016;25:29–42. doi: 10.1109/TFUZZ.2016.2637934. DOI

Matiko J.W., Beeby S.P., Tudor J. Fuzzy logic based emotion classification; Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Florence, Italy. 4–9 May 2014; pp. 4389–4393.

Chelune G.J., Baer R.A. Developmental norms for the Wisconsin Card Sorting test. J. Clin. Exp. Neuropsychol. 1986;8:219–228. doi: 10.1080/01688638608401314. PubMed DOI

Barry D., Petry N.M. Predictors of decision-making on the Iowa Gambling Task: Independent effects of lifetime history of substance use disorders and performance on the Trail Making Test. Brain Cogn. 2008;66:243–252. doi: 10.1016/j.bandc.2007.09.001. PubMed DOI PMC

Jensen A.R. Scoring the Stroop test. Acta Psychol. 1965;24:398–408. doi: 10.1016/0001-6918(65)90024-7. PubMed DOI

Rutkowski T.M., Mori H. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users. J. Neurosci. Methods. 2015;244:45–51. doi: 10.1016/j.jneumeth.2014.04.010. PubMed DOI

Rutkowski T.M. Robotic and virtual reality BCIs using spatial tactile and auditory oddball paradigms. Front. Neurorobot. 2016;10:20. doi: 10.3389/fnbot.2016.00020. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace