Comparison of Smoothing Filters in Analysis of EEG Data for the Medical Diagnostics Purposes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems Projec
PubMed
32024267
PubMed Central
PMC7038754
DOI
10.3390/s20030807
PII: s20030807
Knihovny.cz E-zdroje
- Klíčová slova
- Savitzky–Golay filter., electroencephalography, signal processing, smoothing filters,
- MeSH
- algoritmy MeSH
- artefakty MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- filtrace MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper covers a brief review of both the advantages and disadvantages of the implementation of various smoothing filters in the analysis of electroencephalography (EEG) data for the purpose of potential medical diagnostics. The EEG data are very prone to the occurrence of various internal and external artifacts and signal distortions. In this paper, three types of smoothing filters were compared: smooth filter, median filter and Savitzky-Golay filter. The authors of this paper compared those filters and proved their usefulness, as they made the analyzed data more legible for diagnostic purposes. The obtained results were promising, however, the studies on finding perfect filtering methods are still in progress.
Babinski Specialist Psychiatric Healthcare Center Outpatient Addiction Treatment 91 229 Lodz Poland
Kazimierz Wielki University Institute of Philosophy 85 092 Bydgoszcz Poland
Opole University of Technology Faculty of Physical Education and Physiotherapy 45 758 Opole Poland
University of Greenwich Department of Computing and Information Systems SE10 9LS London UK
Zobrazit více v PubMed
Midhun Raj C.R., Harsha A. Analysis of Fractional Tools on EEG Compression; Proceedings of the International Conference on Communication and Electronics Systems (ICCES); Coimbatore, India. 21–22 October 2016; pp. 1–5.
Midhun Raj C.R., Harsha A. Study on Wavelet Spectral Band based EEG Compression; Proceedings of the International Conference on Data Science and Engineering (ICDSE); Cochin, India. 23–25 August 2016; pp. 1–5.
Ferdi Y. Fractional Order Calculus-based Filters for Biomedical Signal Processing; Proceedings of the 2011 1st Middle East Conference on Biomedical Engineering; Sharjah, United Arab Emirates. 21–24 February 2011; pp. 73–76.
Ferdi Y. Some Applications of Fractional Order Calculus to Design Digital Filters for Biomedical Signal Processing. J. Mech. Med. Biol. 2012;12:1–13. doi: 10.1142/S0219519412400088. DOI
Kawala-Janik A., Podpora M., Baranowski J., Bauer W., Pelc M. Innovative Approach in Analysis of EEG and EMG Signals–Comparision of the two Novel Methods; Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics (MMAR); Miedzyzdroje, Poland. 2–5 September 2014; pp. 804–807.
Kawala-Janik A., Pelc M., Podpora M. Method for EEG Signals Pattern Recognition in Embedded Systems. Elektron. ir Elektrotech. 2015;21:3–9. doi: 10.5755/j01.eee.21.3.9918. DOI
Teo J., Hou L.C., Mountstephens J. Preference Classification Using Electroencephalography (EEG) and Deep Learning. J. Telecommu. Electron. Comput. Eng. 2016;10:87–91.
Kawala-Janik A., Bauer W., Zolubak M., Baranowski J. Early-Stage Pilot Study on Using Fractional-Order Calculus-Based Filtering for the Purpose of Analysis of Electroencephalography Signals. Stud. Logic Gramm. Rhetor. 2016;47:103–111. doi: 10.1515/slgr-2016-0049. DOI
Erickson M.A., Kappenman E.S., Luck S.J. High Temporal Resolution Measurement of Cognitive and Affective Processes in Psychopathology: What Electroencephalography and Magnetoencephalography Can Tell Us About Mental Illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2018;3:4–6. doi: 10.1016/j.bpsc.2017.11.008. PubMed DOI
Sanei S., Chambers J.A. EEG Signal Processing. Wiley; New York, NY, USA: 2008.
Srinivasan R., Nunez P.L., Tucker D.M., Silberstein R.B., Cadusch P.J. Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topogra. 1996;8:355–366. doi: 10.1007/BF01186911. PubMed DOI
Rihan F.A., Safan M., Abdeen M.A., Abdel-Rahman D.H. Mathematical Modeling of Tumor Cell Growth and Immune Systems Interactions. Int. J. Mod. Phy. Conf. Ser. 2012;9:95–111. doi: 10.1142/S2010194512005156. DOI
Baranowsk J., Piatek P., Kawala-Janik A., Zagorowska M., Bauer W., Dziwinski T. Non-integer Order Filtration of Electromyographic Signals. In: Latawiec K., Lukaniszyn M., Stanislawski R., editors. Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering. Springer Verlag; Berlin, Germany: 2015. pp. 231–237.
Kawala-Janik A., Bauer W., Zolubak M., Kolanska-Pluska J., Nazimek B., Sobolewski T., Grochowicz B. Implementation of Non-Integer Smoothing Filtering in Analysis of Polysomnography Data; Proceedings of the 2018 Progress in Applied Electrical Engineering (PAEE); Koscielisko, Poland. 18–22 June 2018; pp. 1–5.
Cantor D.S. An overview of quantitative EEG and its applications to neurofeedback. In: Evans J.R., Abarbanel A., editors. Introduction to Quantitative EEG and Neurofeedback. Elsevier; New York, NY, USA: 1999. pp. 3–27.
La Vaque T.J. The History of EEG Hans Berger. Psychophysiologist. A Historical Vignette. J. Neurother. 1999;3:1–9. doi: 10.1300/J184v03n02_01. DOI
Rak R.J., Kolodziej M., Majkowski A. Brain-computer interface as measurement and control system the review paper. Metrol. Meas. Syst. 2012;19:427–444. doi: 10.2478/v10178-012-0037-4. DOI
Wierzgala P., Zapala D., Wojcik G.M., Masiak J. Most Popular Signal Processing Methods in Motor-Imagery BCI: A Review and Meta-Analysis. Front. Neuroinform. 2018;12:78. doi: 10.3389/fninf.2018.00078. PubMed DOI PMC
Wojcik G.M., Masiak J., Kawiak A., Schneider P., Kwasniewicz L., Polak N., Gajos-Balinska A. New Protocol for Quantitative Analysis of Brain Cortex Electroencephalographic Activity in Patients With Psychiatric Disorders. Front. Neuroinform. 2018;12 doi: 10.3389/fninf.2018.00027. PubMed DOI PMC
Wojcik G.M., Masiak J., Kawiak A., Kwasniewicz L., Schneider P., Polak N., Gajos-Balinska A. Mapping the Human Brain in Frequency Band Analysis of Brain Cortex Electroencephalographic Activity for Selected Psychiatric Disorders. Front. Neuroinform. 2018;12:73. doi: 10.3389/fninf.2018.00073. PubMed DOI PMC
Hong K.-S., Khan M.J., Hong M.J. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Front. Hum. Neurosci. 2018;12:246. doi: 10.3389/fnhum.2018.00246. PubMed DOI PMC
Kolodziej M., Majkowski A., Oskwarek L., Rak R.J., Tarnowski P. Processing and Analysis of EEG Signal for SSVEP Detection. In: Augustyniak P., Tadeusiewicz R., editors. Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. Advances in Intelligent Systems and Computing. Springer Verlag; Berlin, Germany: 2018. pp. 3–21.
Kotyra S., Wojcik G.M. Steady State Visually Evoked Potentials and Their Analysis with Graphical and Acoustic Transformation. In: Augustyniak P., Tadeusiewicz R., editors. Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. Advances in Intelligent Systems and Computing. Springer Verlag; Berlin, Germany: 2018. pp. 22–31.
Agarwal S., Rani A., Singh V., Mittal A.P. EEG signal enhancement using cascaded S-Golay filter. Biomed. Signal Process. Control. 2017;36:194–204. doi: 10.1016/j.bspc.2017.04.004. DOI
Jahani S., Setarehdan S.K., Boas D.A., Yucel M.A. Motion Artifact Detection and Correction in Functional Near-infrared Spectroscopy: A New Hybrid Method Based on Spline Interpolation Method and Savitzky–Golay Filtering. Neurophotonics. 2018;5:015003. doi: 10.1117/1.NPh.5.1.015003. PubMed DOI PMC
Mohammadi-Moghaddam T., Razav S.M.A., Sazgarnia A., Taghizadeh M. Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis. J. Food Meas. Charact. 2018;12:346–355. doi: 10.1007/s11694-017-9646-7. DOI
Pander T. EEG Signal Improvement with Cascaded Filter Based on OWA Operator. Signal Image Video Process. 2019;13:1165–1171. doi: 10.1007/s11760-019-01458-9. DOI
Panchuk V., Semenov V., Legin A., Kirsanov D. Signal Smoothing with PLS Regression. Anal. Chem. 2018;90:5959–5964. doi: 10.1021/acs.analchem.8b01194. PubMed DOI
Ives-Deliperi V.L., Butler J.T. Relationship Between EEG Electrode and Functional Cortex in the International 10 to 20 System. Clin. Neurophysiol. 2018;35:504–509. doi: 10.1097/WNP.0000000000000510. PubMed DOI
Silva F., Arias-Carrion O., Teixeira S., Velasques B., Peressutti C., Paes F., Basile L.F., Menendez-Gonzalez M., Murillo-Rodriguez E., Cagy M., et al. Functional coupling of sensorimotor and associative areas during a catching ball task: A qEEG coherence study. Int. Arch. Med. 2012;5:9. doi: 10.1186/1755-7682-5-9. PubMed DOI PMC
Jurcak V., Tsuzuki D., Dan I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage. 2007;34:1600–1611. doi: 10.1016/j.neuroimage.2006.09.024. PubMed DOI
Jiang Z.-J., Zheng L.-L. Inter- and intra-hemispheric EEG coherence in patients with mild cognitive impairment at rest and during working memory task. J. Zhejiang Univ. Sci. B. 2006;7:357–364. doi: 10.1631/jzus.2006.B0357. PubMed DOI PMC
Kaya M., Binli M.K., Ozbay E., Hilmi Yanar H., Mishchenko Y. A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci. Data. 2018;5:180211. doi: 10.1038/sdata.2018.211. PubMed DOI PMC
Dias N.S., Mendes P.M., Correia J.H. Feature Selection for Brain-Computer Interface; Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering; Antwerp, Belgium. 3–27 November 2008; pp. 318–321.
Babiloni C., Carducci F., Cincotti F., Rossini P.M., Neuper C., Pfurtscheller G., Babiloni F. Human Movement-Related Potentials vs Desynchronization of EEG Alpha Rhythm: A High-Resolution EEG Study. NeuroImage. 1999;10:658–665. doi: 10.1006/nimg.1999.0504. PubMed DOI
Bhushana Rao K.C., Krishna B.T. Comparative analysis of integer and non-integer order Savitzky–Golay digital filters; Proceedings of the 2017 Third Asian Conference on Defence Technology (ACDT); Phuket, Thailand. 18–20 January 2017; pp. 26–31.
Liu J.G. Smoothing Filter-based Intensity Modulation: A Spectral Preserve Image Fusion Technique for Improving Spatial Details. Int. J. Remote Sens. 2018;21:3461–3472. doi: 10.1080/014311600750037499. DOI
Einicke G. Smoothing, Filtering and Prediction. Estimating The Past, Present and Future. IntechOpen; London, UK: 2012.
Szczesna A., Blaszczyszyn M. Quantitative analysis of arm movement smoothness; Proceedings of the AIP Conference Proceedings—14th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2016); Rhodes, Greece. 19–25 September 2016.
Zielinski T.P. Cyfrowe Przetwarzanie Sygnalow. Od Teorii do Zastosowan (In Polish—English title: Digital Signal Processing. From Theory to Applications. Wydawnictwa Komunikacji i Lacznosci; Warszawa, Poland: 2007.
Baranowski J., Bauer W., Zagorowska M., Piatek P. On Digital Realizations of Non-integer Order Filters. Circuits Syst. Signal Process. 2016;136:2083–2107. doi: 10.1007/s00034-016-0269-8. DOI
Puzdrowska P. Signal filtering method of the fast-varying diesel exhaust gas temperature. Combust. Engines. 2018;175:50–52.
Astola J., Kuosmanen P. Fundamentals of Nonlinear Digital Filtering. CRC Press; Boca Raton, FL, USA: 2007.
‘Anomaly.io’. Moving Median is Robust to Anomalies. [(accessed on 27 December 2019)];2019 Available online: https://anomaly.io/moving-median-robust-anomaly/index.html.
Liberty J. Moving Median: A better indicator than Moving Average? [(accessed on 27 December 2019)];2019 Available online: http://www.automated-trading-system.com/moving-median-better-indicator-than-moving-average/
Cho H., Ahn M., Ahn S., Kwon M., Jun S.C. EEG datasets for motor imagery brain computer interface. GigaScience. 2017;6:1–8. doi: 10.1093/gigascience/gix034. PubMed DOI PMC
Schalk G., McFarland D.J., Hinterberger T., Birbaumer N., Wolpaw J.R. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Trans. Biomed. Eng. 2004;51:1034–1043. doi: 10.1109/TBME.2004.827072. PubMed DOI
Wojcik G.M., Kotyra S. The Station for Neurofeedback Phenomenon Research. In: Augustyniak P., Tadeusiewicz R., editors. Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. Advances in Intelligent Systems and Computing. Springer; Berlin, Germany: 2018. pp. 32–43.
Gorzelanczyk E.J. Functional Anatomy, Physiology and Clinical Aspects of Basal Ganglia. Neuroimaging for Clinicians—Combining Research and Practice. InTechOpen; London, UK: 2007.
Crick F., Koch C. Consciousness and Neuroscience. Cerebral Cortex. 2019 in press. PubMed
Amo A., De Santiago L., Lucianez D.Z., Alonso-Cortes J.M.L., Alonso-Alonso M., Barea R., Boquete L. Induced gamma band activity from EEG as a possible index of training-related brain plasticity in motor tasks. PLoS ONE. 2017;12:e0186008. doi: 10.1371/journal.pone.0186008. PubMed DOI PMC
Teipel S., Grothe M.J., Zhou J., Sepulcre J., Dyrba M., Sorg C., Babiloni C. Measuring cortical connectivity in Alzheimer’s disease as a brain neural network pathology: Toward clinical applications. J. Int. Neuropsychol. Soc. 2016;22:138–163. doi: 10.1017/S1355617715000995. PubMed DOI
Kawala-Janik A., Bauer W., Al-Bakri A., Haddix C., Yuvaraj R., Cichon K., Podraza W. Implementation of Low-Pass Fractional Filtering for the Purpose of Analysis of Electroencephalographic Signals. In: Ostalczyk P., Sankowski D., Nowakowski J., editors. Non-Integer Order Calculus and Its Applications. Lecture Notes in Electrical Engineering. Springer; Berlin, Germany: 2019. pp. 63–73.
Oldham K.B., Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press; Cambridge, MA, USA: 1974.
Podlubny I. Mathematics in Science and Engineering. Elsevier; Amsterdam, The Netherlands: 1999. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.
Baranowski J., Piatek P. Fractional Band-Pass Filters: Design, Implementation and Application to EEG Signal Processing. J. Circuits Syst. Comput. 2017;26:1750170. doi: 10.1142/S0218126617501705. DOI
Kawala-Janik A., Zolubak M., Bauer W., Nazimek B., Sobolewski T., Martinek R., Sowa M., Pelc M. Implementation of Non-Integer Order Filtering for the Purpose of Disparities Detection in Beta Frequencies—A Pilot Study; Proceedings of the 23rd International Conference on Methods and Models in Automation and Robotics (MMAR); Miedzyzdroje, Poland. 27–30 August 2018; pp. 607–612.
Bania P., Baranowski J. Laguerre Polynomial Approximation of Fractional Order Linear Systems. In: Mitkowski W., Kacprzyk J., Baranowski J., editors. Advances in the Theory and Applications of Non-integer Order Systems. Springer; Berlin, Germany: 2013. pp. 171–182.
Anthony R.J. A Policy-Definition Language and Prototype Implementation Library for Policy-based Autonomic Systems; Proceedings of the IEEE International Conference on Autonomic Computing; Dublin, Ireland. 12–16 June 2006; pp. 65–276.
Spuler M., Lopez-Larraz E., Ramos-Murguialday A. On the design of EEG-based movement decoders for completely paralyzed stroke patients. J. Neuroeng. Rehabil. 2018;15:110. doi: 10.1186/s12984-018-0438-z. PubMed DOI PMC
Kawala-Sterniuk A., Zolubak M., Ozana S., Siui D., Macek-Kaminska K., Grochowicz B., Pelc M. Implementation of Smoothing Filtering Methods for the Purpose of Improvement Inverted Pendulum’s Trajectory. Prz. Elektrotech. 2019 in press.
Kawala-Sterniuk A., Slanina Z., Ozana S. Implementation of Smoothing Filtering Methods for the Purpose of Trajectory Improvement of Single- and Triple-Inverted Pendulums; Proceedings of the 6th International Conference on Advanced Engineering—Theory and Applications; Bogotá, Colombia. 6–8 November 2019.
Koziorek J., Ozana S., Srovnal V., Docekal T. Modeling and Simulations in Control Software Design. In: Kenett R.S., Ruggeri F., Faltin F.W., editors. Analytic Methods in Systems and Software Testing. Wiley; New York, NY, USA: 2018. pp. 287–326.
Pelc M. Context-aware Fuzzy Control Systems. Int. J. Software Engineer. Knowledge Eng. 2014;24:825–856. doi: 10.1142/S0218194014500326. DOI
A Review of Patient Bed Sensors for Monitoring of Vital Signs
Summary of over Fifty Years with Brain-Computer Interfaces-A Review