Advanced Bioelectrical Signal Processing Methods: Past, Present, and Future Approach-Part III: Other Biosignals
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems
SP2021/32
Ministry of Education of the Czech Republic
PubMed
34577270
PubMed Central
PMC8469046
DOI
10.3390/s21186064
PII: s21186064
Knihovny.cz E-zdroje
- Klíčová slova
- biomedical signals, electrogastrography, electrohysterography, electromyography, electroneurography, electrooculography, electroretinography, signal processing,
- MeSH
- elektromyografie MeSH
- elektrookulografie MeSH
- elektroretinografie * MeSH
- počítačové zpracování signálu * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Analysis of biomedical signals is a very challenging task involving implementation of various advanced signal processing methods. This area is rapidly developing. This paper is a Part III paper, where the most popular and efficient digital signal processing methods are presented. This paper covers the following bioelectrical signals and their processing methods: electromyography (EMG), electroneurography (ENG), electrogastrography (EGG), electrooculography (EOG), electroretinography (ERG), and electrohysterography (EHG).
Zobrazit více v PubMed
Martinek R., Ladrova M., Sidikova M., Jaros R., Behbehani K., Kahankova R., Kawala-Sterniuk A. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach—Part I: Cardiac Signals. Sensors. 2021;21:5186. doi: 10.3390/s21155186. PubMed DOI PMC
Rash G.S., Quesada P. Electromyography Fundamentals. Retrieved Febr. 2003;4
Manoni L., Turchetti C., Falaschetti L., Crippa P. A Comparative Study of Computational Methods for Compressed Sensing Reconstruction of Emg Signal. Sensors. 2019;19:3531. doi: 10.3390/s19163531. PubMed DOI PMC
Belyea A. Ph.D. Thesis. University of New Brunswick; Fredericton, NB, Canada: 2018. Evaluation of the Real-Time Usability of Force Myography as a Human-Computer Interface.
Kawala-Janik A., Podpora M., Konieczny M. Innovative Approach in Signal Processing of Electromyography Signals. J. Combat Sport. Martial Arts. 2014;5:101–112. doi: 10.5604/20815735.1141984. DOI
Rangayyan R.M. Biomedical Signal Analysis. 2nd ed. IEEE Press; Piscataway, NJ, USA: John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2015. IEEE Press Series in Biomedical Engineering.
Penhaker M., Augustynek M. Zdravotnické Elektrické Přístroje 1. VSB—Technical University of Ostrava; Ostrava, Czechia: 2013.
Pasinetti S., Lancini M., Bodini I., Docchio F. A Novel Algorithm for EMG Signal Processing and Muscle Timing Measurement. IEEE Trans. Instrum. Meas. 2015;64:2995–3004. doi: 10.1109/TIM.2015.2434097. DOI
Shair E., Ahmad S., Abdullah A., Marhaban M., Tamrin S.M. Determining Best Window Size for an Improved Gabor Transform in EMG Signal Analysis. TELKOMNIKA Telecommun. Comput. Electron. Control. 2018;16:1650. doi: 10.12928/telkomnika.v16i4.9049. DOI
Reyes López D.A., Correa H.L., López M.A., Duarte Sánchez J.E. Expert Committee Classifier for Hand Motions Recognition from EMG Signals. INGENIARE Rev. Chil. De Ing. 2018;26:62–71. doi: 10.4067/S0718-33052018000100062. DOI
Dixon A.M., Allstot E.G., Gangopadhyay D., Allstot D.J. Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors. IEEE Trans. Biomed. Circuits Syst. 2012;6:156–166. doi: 10.1109/TBCAS.2012.2193668. PubMed DOI
Salman A., Allstot E.G., Chen A.Y., Dixon A.M., Gangopadhyay D., Allstot D.J. Compressive Sampling of EMG Bio-Signals; Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS); Rio de Janeiro, Brazil. 15–18 May 2011; New York, NY, USA: IEEE; 2011. pp. 2095–2098.
Ravelomanantsoa A., Rouane A., Rabah H., Ferveur N., Collet L. Design and Implementation of a Compressed Sensing Encoder: Application to EMG and ECG Wireless Biosensors. Circuits Syst. Signal Process. 2017;36:2875–2892. doi: 10.1007/s00034-016-0444-y. DOI
Barkhaus P.E., Nandedkar S.D. Recording Characteristics of the Surface EMG Electrodes. Muscle Nerve. 1994;17:1317–1323. doi: 10.1002/mus.880171111. PubMed DOI
Celichowski J., Krutki P. Muscle and Exercise Physiology. Elsevier; Amsterdam, The Netherlands: 2019. Motor Units and Muscle Receptors; pp. 51–91. DOI
Merletti R., Parker P., editors. Electromyography: Physiology, Engineering, and Noninvasive Applications. IEEE Press; Piscataway, NJ, USA: John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2004. IEEE Press Series in Biomedical Engineering.
Beverwyk A.J., Mancuso K., Prabhakar A., Lissauer J., Kaye A.D., Davis S.F. Electromyography (EMG) In: Davis S.F., Kaye A.D., editors. Principles of Neurophysiological Assessment, Mapping, and Monitoring. Springer International Publishing; Cham, Switzerland: 2020. pp. 135–145. DOI
Inbar G.F., Paiss O., Allin J., Kranz H. Monitoring Surface EMG Spectral Changes by the Zero Crossing Rate. Med. Biol. Eng. Comput. 1986;24:10–18. doi: 10.1007/BF02441600. PubMed DOI
Robertson D.G.E., editor. Research Methods in Biomechanics. Human Kinetics; Champaign, IL, USA: 2004.
Chamblin D. Foreword. Phys. Med. Rehabil. Clin. N. Am. 2015;26:xi–xiii. doi: 10.1016/j.pmr.2015.05.002. PubMed DOI
Pullman S.L., Goodin D.S., Marquinez A.I., Tabbal S., Rubin M. Clinical Utility of Surface EMG: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2000;55:171–177. doi: 10.1212/WNL.55.2.171. PubMed DOI
Tankisi H., Burke D., Cui L., de Carvalho M., Kuwabara S., Nandedkar S.D., Rutkove S., Stålberg E., van Putten M.J., Fuglsang-Frederiksen A. Standards of Instrumentation of EMG. Clin. Neurophysiol. 2020;131:243–258. doi: 10.1016/j.clinph.2019.07.025. PubMed DOI
Carvalho H., Verdonck M., Cools W., Geerts L., Forget P., Poelaert J. Forty Years of Neuromuscular Monitoring and Postoperative Residual Curarisation: A Meta-Analysis and Evaluation of Confidence in Network Meta-Analysis. Br. J. Anaesth. 2020;125:466–482. doi: 10.1016/j.bja.2020.05.063. PubMed DOI
Samuel O.W., Asogbon M.G., Geng Y., Al-Timemy A.H., Pirbhulal S., Ji N., Chen S., Fang P., Li G. Intelligent EMG Pattern Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects. IEEE Access. 2019;7:10150–10165. doi: 10.1109/ACCESS.2019.2891350. DOI
Fang C., He B., Wang Y., Cao J., Gao S. EMG-Centered Multisensory Based Technologies for Pattern Recognition in Rehabilitation: State of the Art and Challenges. Biosensors. 2020;10:85. doi: 10.3390/bios10080085. PubMed DOI PMC
Kahl L., Hofmann U.G. Removal of ECG Artifacts from EMG Signals with Different Artifact Magnitudes by Template Subtraction. Curr. Dir. Biomed. Eng. 2019;5:357–359. doi: 10.1515/cdbme-2019-0090. DOI
Incorporated D. Signal Quality Monitor—EMGworks®. [(accessed on 15 July 2021)]. Available online: https://delsys.com/emgworks/signal-quality-monitor/
Abbaspour S., Fallah A. Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique. J. Biomed. Phys. Eng. 2014;4:33. PubMed PMC
Chowdhury R., Reaz M., Ali M., Bakar A., Chellappan K., Chang T. Surface Electromyography Signal Processing and Classification Techniques. Sensors. 2013;13:12431–12466. doi: 10.3390/s130912431. PubMed DOI PMC
Kawala-Janik A. Ph.D. Thesis. University of Greenwich; London, UK: 2013. Efficiency Evaluation of External Environments Control Using Bio-Signals.
Kawala-Janik A., Pelc M., Podpora M. Method for EEG Signals Pattern Recognition in Embedded Systems. Elektron. Ir Elektrotech. 2015;21:3–9. doi: 10.5755/j01.eee.21.3.9918. DOI
Wu Q., Xi C., Ding L., Wei C., Ren H., Law R., Dong H., Li X.L. Classification of EMG Signals by BFA-Optimized GSVCM for Diagnosis of Fatigue Status. IEEE Trans. Autom. Sci. Eng. 2017;14:915–930. doi: 10.1109/TASE.2016.2564419. DOI
Lajante M.M.P., Droulers O., Amarantini D. How Reliable Are “State-of-the-Art” Facial EMG Processing Methods?: Guidelines for Improving the Assessment Of Emotional Valence in Advertising Research. J. Advert. Res. 2017;57:28–37. doi: 10.2501/JAR-2017-011. DOI
Soedirdjo S.D.H., Ullah K., Merletti R. Power Line Interference Attenuation in Multi-Channel sEMG Signals: Algorithms and Analysis; Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan, Italy. 25–29 August 2015; New York, NY, USA: IEEE; 2015. pp. 3823–3826. PubMed DOI
Lu G., Brittain J.S., Holland P., Yianni J., Green A.L., Stein J.F., Aziz T.Z., Wang S. Removing ECG Noise from Surface EMG Signals Using Adaptive Filtering. Neurosci. Lett. 2009;462:14–19. doi: 10.1016/j.neulet.2009.06.063. PubMed DOI
Marque C., Bisch C., Dantas R., Elayoubi S., Brosse V., Pérot C. Adaptive Filtering for ECG Rejection from Surface EMG Recordings. J. Electromyogr. Kinesiol. 2005;15:310–315. doi: 10.1016/j.jelekin.2004.10.001. PubMed DOI
Hussain M., Reaz M., Mohd-Yasin F., Ibrahimy M. Electromyography Signal Analysis Using Wavelet Transform and Higher Order Statistics to Determine Muscle Contraction. Expert Syst. 2009;26:35–48. doi: 10.1111/j.1468-0394.2008.00483.x. DOI
Jiang C.F., Kuo S.L. A Comparative Study of Wavelet Denoising of Surface Electromyographic Signals; Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Lyon, France. 22–26 August 2007; New York, NY, USA: IEEE; 2007. pp. 1868–1871. PubMed DOI
Howard R.M., Conway R., Harrison A.J. An Exploration of Eliminating Cross-Talk in Surface Electromyography Using Independent Component Analysis; Proceedings of the 2015 26th Irish Signals and Systems Conference (ISSC); Carlow, Ireland. 24–25 June 2015; New York, NY, USA: IEEE; 2015. pp. 1–6. DOI
Naik G.R., Kumar D.K., Palaniswami M. Multi Run ICA and Surface EMG Based Signal Processing System for Recognising Hand Gestures; Proceedings of the 2008 8th IEEE International Conference on Computer and Information Technology; Sydney, Australia. 8–11 July 2008; New York, NY, USA: IEEE; 2008. pp. 700–705. DOI
Mengying X., Xiaoli Y., Chenli X., Bin Y. EMG Signal Processing and Application Based on Empirical Mode Decomposition. Signal. 2019;3:4. doi: 10.11648/j.mcs.20190406.11. DOI
Andrade A.O., Nasuto S., Kyberd P., Sweeney-Reed C.M., Van Kanijn F. EMG Signal Filtering Based on Empirical Mode Decomposition. Biomed. Signal Process. Control. 2006;1:44–55. doi: 10.1016/j.bspc.2006.03.003. DOI
Mishra V.K., Bajaj V., Kumar A., Sharma D., Singh G. An Efficient Method for Analysis of EMG Signals Using Improved Empirical Mode Decomposition. AEU Int. J. Electron. Commun. 2017;72:200–209. doi: 10.1016/j.aeue.2016.12.008. DOI
Zhang X., Zhou P. Filtering of Surface EMG Using Ensemble Empirical Mode Decomposition. Med. Eng. Phys. 2013;35:537–542. doi: 10.1016/j.medengphy.2012.10.009. PubMed DOI PMC
Abbaspour S., Lindén M., Gholamhosseini H. ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA. PHealth. 2015;211:91–97. doi: 10.3233/978-1-61499-516-6-91. PubMed DOI
Ren X., Yan Z., Wang Z., Hu X. Noise Reduction Based on ICA Decomposition and Wavelet Transform for the Extraction of Motor Unit Action Potentials. J. Neurosci. Methods. 2006;158:313–322. doi: 10.1016/j.jneumeth.2006.06.005. PubMed DOI
Sinkjær T., Yoshida K., Jensen W., Schnabel V. Encyclopedia of Medical Devices and Instrumentation. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2006. Electroneurography.
Adrian E.D. The Basis of Sensation. W W Norton & Co.; New York, NY, USA: 1928. p. 122.
Dowben R.M., Rose J.E. A Metal-Filled Microelectrode. Science. 1953;118:22–24. doi: 10.1126/science.118.3053.22. PubMed DOI
Marg E., Adams J.E. Indwelling Multiple Micro-Electrodes in the Brain. Electroencephalogr. Clin. Neurophysiol. 1967;23:277–280. doi: 10.1016/0013-4694(67)90126-5. PubMed DOI
Langmeier J., Krejčířová D., Langmeier M. Vývojová Psychologie s Úvodem do Vývojové Neurofyziologie. H & H; Praha, Czech Republic: 1998.
Abdelghani M.N., Abbas J.J., Jung R. Peripheral Nerve Interface Applications, EMG/ENG. In: Jaeger D., Jung R., editors. Encyclopedia of Computational Neuroscience. Springer; New York, NY, USA: 2014. pp. 1–10. DOI
Hoffmann K.P., Krechel U. Devices and Methods in Clinical Neurophysiology. In: Kramme R., Hoffmann K.P., Pozos R.S., editors. Springer Handbook of Medical Technology. Springer; Berlin/Heidelberg, Germany: 2011. pp. 119–157. DOI
Lei G.S., Yang H.S., Miao J.T. The Clinical Significance of Neural Electrical Pathological Changes on Amyotrophic Lateral Sclerosis Patients. Mod. Rehabil. 2002
Nesrulaeva N., Gnezditskiy V., Demokidova O. P18. 11 Sensitivity and Specificity of Multimodal Evoked Potentials in the Diagnosis of Multiple Sclerosis and Optic Neuritis. Clin. Neurophysiol. 2011;122:140–141. doi: 10.1016/S1388-2457(11)60501-4. DOI
Dhillon G.S., Lawrence S.M., Hutchinson D.T., Horch K.W. Residual Function in Peripheral Nerve Stumps of Amputees: Implications for Neural Control of Artificial Limbs. J. Hand Surg. 2004;29:605–615. doi: 10.1016/j.jhsa.2004.02.006. PubMed DOI
Micera S., Carpaneto J., Raspopovic S. Control of Hand Prostheses Using Peripheral Information. IEEE Rev. Biomed. Eng. 2010;3:48–68. doi: 10.1109/RBME.2010.2085429. PubMed DOI
Navarro X., Krueger T.B., Lago N., Micera S., Stieglitz T., Dario P. A Critical Review of Interfaces with the Peripheral Nervous System for the Control of Neuroprostheses and Hybrid Bionic Systems. J. Peripher. Nerv. Syst. 2005;10:229–258. doi: 10.1111/j.1085-9489.2005.10303.x. PubMed DOI
Szczęsna A., Błaszczyszyn M., Kawala-Sterniuk A. Convolutional neural network in upper limb functional motion analysis after stroke. PeerJ. 2020;8:e10124. doi: 10.7717/peerj.10124. PubMed DOI PMC
Schaumberg J., Schwandt D. Movement Disorders of the Upper Extremities in Children. Springer; Berlin/Heidelberg, Germany: 2021. “Invasive” Diagnostic Procedures: Electromyography, Neurography and Evoked Potentials; pp. 85–91.
Ahmadizadeh C., Khoshnam M., Menon C. Human Machine Interfaces in Upper-Limb Prosthesis Control: A Survey of Techniques for Preprocessing and Processing of Biosignals. IEEE Signal Process. Mag. 2021;38:12–22. doi: 10.1109/MSP.2021.3057042. DOI
Bosl W. Neurotechnology and Psychiatric Biomarkers. In: Ghista D.N., editor. Biomedical Science, Engineering and Technology. InTechOpen; London, UK: 2012. DOI
Reaz M.B.I., Hussain M.S., Mohd-Yasin F. Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications. Biol. Proced. Online. 2006;8:11–35. doi: 10.1251/bpo115. PubMed DOI PMC
Hinton G.E. Machine Learning for Neuroscience. Neural Syst. Circuits. 2011;1:12. doi: 10.1186/2042-1001-1-12. PubMed DOI PMC
Lewicki M.S. A Review of Methods for Spike Sorting: The Detection and Classification of Neural Action Potentials. Network Comput. Neural Syst. 1998;9:R53–R78. doi: 10.1088/0954-898X_9_4_001. PubMed DOI
Robert P.Y., Sawan M. An Independent-Component-Analysis-Based Time-Space Processor for the Identification of Neural Stimulation Sources; Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Lyon, France. 22–26 August 2007; New York, NY, USA: IEEE; 2007. pp. 3876–3879. PubMed DOI
Moshou D., Hostens I., Papaioannou G., Ramon H. Scattering Theory and Biomedical Engineering Modelling and Applications. WORLD SCIENTIFIC; Perdika, Greece: 2000. Wavelet Based Electromyogram (EMG) Analysis; pp. 265–272. DOI
Aschero G., Gizdulich P. Denoising of Surface EMG with a Modified Wiener Filtering Approach. J. Electromyogr. Kinesiol. 2010;20:366–373. doi: 10.1016/j.jelekin.2009.02.003. PubMed DOI
Lehky S.R. Decoding Poisson Spike Trains by Gaussian Filtering. Neural Comput. 2010;22:1245–1271. doi: 10.1162/neco.2009.07-08-823. PubMed DOI
Massot C., Schneider A.D., Chacron M.J., Cullen K.E. The Vestibular System Implements a Linear–Nonlinear Transformation in Order to Encode Self-Motion. PLoS Biol. 2012;10:e1001365. doi: 10.1371/journal.pbio.1001365. PubMed DOI PMC
Komorowski D., Pietraszek S., Tkacz E., Provaznik I. The Extraction of the New Components from Electrogastrogram (EGG), Using Both Adaptive Filtering and Electrocardiographic (ECG) Derived Respiration Signal. BioMedical Eng. Online. 2015;14:60. doi: 10.1186/s12938-015-0054-0. PubMed DOI PMC
Wang B., Wen T., Hou J., Lin L., Fang Y., Du Y., Pan T. The High-Dimensional Signal Classification of Electrogastrogram for Detection of Gastric Motility Disorders. J. Med. Imaging Health Inform. 2020;10:1281–1287. doi: 10.1166/jmihi.2020.3031. DOI
Riezzo G., Russo F., Indrio F. Electrogastrography in Adults and Children: The Strength, Pitfalls, and Clinical Significance of the Cutaneous Recording of the Gastric Electrical Activity. BioMed Res. Int. 2013;2013:282757. doi: 10.1155/2013/282757. PubMed DOI PMC
Komorowski D., Mika B. A New Approach for Denoising Multichannel Electrogastrographic Signals. Biomed. Signal Process. Control. 2018;45:213–224. doi: 10.1016/j.bspc.2018.05.041. DOI
Verhagen M.A.M.T. Electrogastrography. Clin. Auton. Res. 2005;15:364–367. doi: 10.1007/s10286-005-0313-4. PubMed DOI
Yin J., Chen J.D.Z. Electrogastrography: Methodology, Validation and Applications. J. Neurogastroenterol. Motil. 2013;19:5–17. doi: 10.5056/jnm.2013.19.1.5. PubMed DOI PMC
Alagumariappan P., Krishnamurthy K., Kandiah S., Cyril E., Venkatesan R. Feature Extraction and Genetic Algorithm Based Feature Selection for Diagnosis of Type-2 Diabetes Using Electrogastrograms. JMIR Biomed. Eng. 2020 doi: 10.2196/20932. DOI
Hu Y., Zhang B., Shi X., Ning B., Shi J., Zeng X., Liu F., Chen J.D., Xie W.F. Ameliorating Effects and Autonomic Mechanisms of Transcutaneous Electrical Acustimulation in Patients With Gastroesophageal Reflux Disease. NeuroModul. Technol. Neural Interface. 2019:1207–1214. doi: 10.1111/ner.13082. PubMed DOI
Levanon D., Chen J.Z. Electrogastrography: Its Role in Managing Gastric Disorders. J. Pediatr. Gastroenterol. Nutr. 1998;27:431–443. doi: 10.1097/00005176-199810000-00014. PubMed DOI
Komorowski D., Tkacz E. A New Method for Attenuation of Respiration Artifacts in Electrogastrographic (EGG) Signals; Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan, Italy. 25–29 August 2019; New York, NY, USA: IEEE; 2015. pp. 6006–6009. PubMed DOI
Chen J., Vandewalle J., Sansen W., Vantrappen G., Janssens J. Multichannel Adaptive Enhancement of the Electrogastrogram. IEEE Trans. Biomed. Eng. 1990;37:285–294. doi: 10.1109/10.52329. PubMed DOI
Qiao W., Sun H.H., Chey W.Y., Lee K.Y. Continuous Wavelet Analysis as an Aid in the Representation and Interpretation of Electrogastrographic Signals. Ann. Biomed. Eng. 1998;26:1072–1081. doi: 10.1114/1.27. PubMed DOI
Ryu C., Nam K., Kim S., Kim D. Comparison of Digital Filters with Wavelet Multiresolution Filter for Electrogastrogram; Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society Engineering in Medicine and Biology; Houston, TX, USA. 23–26 October 2002; New York, NY, USA: IEEE; 2002. pp. 137–138. DOI
De Sobral Cintra R., Tchervensky I., Dimitrov V., Mintchev M. Optimal Wavelets for Electrogastrography; Proceedings of the The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Francisco, CA, USA. 1–5 September 2004; New York, NY, USA: IEEE; 2004. pp. 329–332. PubMed DOI
Zou L., Zhang Y., Yang L.T., Zhou R. Single-Trial Evoked Potentials Study by Combining Wavelet Denoising and Principal Component Analysis Methods. J. Clin. Neurophysiol. 2010;27:17–24. doi: 10.1097/WNP.0b013e3181c9b29a. PubMed DOI
Hubka P., Rosik V., Zdinak J., Tysler M., Hulín I. Independent Component Analysis of Electrogastrographic Signals. Meas. Sci. Rev. 2005;5:21–24.
Liang H., Lin Z., McCallum R.W. Artifact Reduction in Electrogastrogram Based on Empirical Mode Decomposition Method. Med. Biol. Eng. Comput. 2000;38:35–41. doi: 10.1007/BF02344686. PubMed DOI
Kawala-Sterniuk A., Podpora M., Pelc M., Blaszczyszyn M., Gorzelanczyk E.J., Martinek R., Ozana S. Comparison of Smoothing Filters in Analysis of EEG Data for the Medical Diagnostics Purposes. Sensors. 2020;20:807. doi: 10.3390/s20030807. PubMed DOI PMC
Popovic N.B., Miljkovic N., Sekara T.B. Electrogastrogram and Electrocardiogram Interference: Application of Fractional Order Calculus and Savitzky-Golay Filter for Biosignals Segregation; Proceedings of the 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH); East Sarajevo, Bosnia and Herzegovina. 18–20 March 2020; New York, NY, USA: IEEE; 2020. pp. 1–5. DOI
Sengottuvel S., Khan P.F., Mariyappa N., Patel R., Saipriya S., Gireesan K. A Combined Methodology to Eliminate Artifacts in Multichannel Electrogastrogram Based on Independent Component Analysis and Ensemble Empirical Mode Decomposition. SLAS TECHNOLOGY: Transl. Life Sci. Innov. 2018;23:269–280. doi: 10.1177/2472630318756903. PubMed DOI
Heide W., Koenig E., Trillenberg P., K’ompf D., Zee D.S. Electrooculography: Technical Standards and Applications. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999;52:223–240. PubMed
Agarwal S., Singh V., Rani A., Mittal A. Hardware Efficient Denoising System for Real EOG Signal Processing. J. Intell. Fuzzy Syst. 2017;32:2857–2862. doi: 10.3233/JIFS-169228. DOI
López A., Ferrero F., Villar J.R., Postolache O. High-Performance Analog Front-End (AFE) for EOG Systems. Electronicsweek. 2020;9:970. doi: 10.3390/electronics9060970. DOI
Creel D.J. Handbook of Clinical Neurology. Volume 160. Elsevier; Amsterdam, The Netherlands: 2019. The Electrooculogram; pp. 495–499. PubMed DOI
Reddy M.S., Sammaiah A., Narsimha B., Rao K.S. Analysis of EOG Signals Using Empirical Mode Decomposition for Eye Blink Detection; Proceedings of the 2011 International Conference on Multimedia and Signal Processing; Guilin, China. 14–15 May 2011; New York, NY, USA: IEEE; 2011. pp. 293–297. DOI
Sharma K., Jain N., Pal P.K. Detection of Eye Closing/Opening from EOG and Its Application in Robotic Arm Control. Biocybern. Biomed. Eng. 2020;40:173–186. doi: 10.1016/j.bbe.2019.10.004. DOI
Chang W.D., Cha H.S., Kim D.Y., Kim S.H., Im C.H. Development of an Electrooculogram-Based Eye-Computer Interface for Communication of Individuals with Amyotrophic Lateral Sclerosis. J. NeuroEng. Rehabil. 2017;14:89. doi: 10.1186/s12984-017-0303-5. PubMed DOI PMC
Tsai J., Lee C., Wu C., Wu J., Kao K. A Feasibility Study of an Eye-Writing System Based on Electro-Oculography. J. Med. Biol. Eng. 2008;28:39.
Fang F., Shinozaki T. Electrooculography-Based Continuous Eye-Writing Recognition System for Efficient Assistive Communication Systems. PLoS ONE. 2018;13:e0192684. doi: 10.1371/journal.pone.0192684. PubMed DOI PMC
Maddirala A., Shaik R.A. Removal of EOG Artifacts from Single Channel EEG Signals Using Combined Singular Spectrum Analysis and Adaptive Noise Canceler. IEEE Sen. J. 2016;16:8279–8287. doi: 10.1109/JSEN.2016.2560219. DOI
Najarian K. Biomedical Signal and Image Processing. CRC Press—Taylor & Francis Group; Boca Raton, FL, USA: 2016.
Deng L.Y., Hsu C.L., Lin T.C., Tuan J.S., Chang S.M. EOG-based Human–Computer Interface system development. Expert Syst. Appl. 2010;37:3337–3343. doi: 10.1016/j.eswa.2009.10.017. DOI
Keskinoğlu C., AYDIN A. EOG–Based Computer Control System for People with Mobility Limitations. Avrupa Bilim Teknol. Derg. 2021;26:256–261.
Milanizadeh S., Safaie J. EOG-based HCI system for quadcopter navigation. IEEE Trans. Instrum. Meas. 2020;69:8992–8999. doi: 10.1109/TIM.2020.3001411. DOI
He S., Li Y. A Single-Channel EOG-Based Speller. IEEE Trans. Neural Syst. Rehabil. Eng. 2017;25:1978–1987. doi: 10.1109/TNSRE.2017.2716109. PubMed DOI
Reddy M.S., Narasimha B., Suresh E., Rao K.S. Analysis of EOG Signals Using Wavelet Transform for Detecting Eye Blinks; Proceedings of the 2010 International Conference on Wireless Communications & Signal Processing (WCSP); Suzhou, China. 21–23 October 2010; New York, NY, USA: IEEE; 2010. pp. 1–4. DOI
Abbas S.N., Abo-Zahhad M. Eye Blinking EOG Signals as Biometrics. In: Jiang R., Al-maadeed S., Bouridane A., Crookes P.D., Beghdadi A., editors. Biometric Security and Privacy. Springer International Publishing; Cham, Switzerland: 2017. pp. 121–140. DOI
Divjak M., Bischof H. Eye Blink Based Fatigue Detection for Prevention of Computer Vision Syndrome; Proceedings of the 2009 IAPR Conference on Machine Vision Applications (MVA2009); Yokohama, Japan. 20–22 May 2009; pp. 350–353.
Grauman K., Betke M., Gips J., Bradski G. Communication via Eye Blinks—Detection and Duration Analysis in Real Time; Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001; Kauai, HI, USA. 8–14 December 2001; Washington, DC, USA: IEEE Computer Society; 2001. pp. I-1010–I-1017. DOI
Ebrahim P. Ph.D. Thesis. University of Stuttgart; Stuttgart, Germany: 2016. Driver Drowsiness Monitoring Using Eye Movement Features Derived from Electrooculography. DOI
Torricelli D., Goffredo M., Conforto S., Schmid M. An Adaptive Blink Detector to Initialize and Update a View-Basedremote Eye Gaze Tracking System in a Natural Scenario. Pattern Recognit. Lett. 2009;30:1144–1150. doi: 10.1016/j.patrec.2009.05.014. DOI
Jammes B., Sharabty H., Esteve D. Automatic EOG Analysis: A First Step toward Automatic Drowsiness Scoring during Wake-Sleep Transitions. Somnologie Schlafforschung Schlafmed. 2008;12:227–232. doi: 10.1007/s11818-008-0351-y. DOI
Picot A., Caplier A., Charbonnier S. Comparison between EOG and High Frame Rate Camera for Drowsiness Detection; Proceedings of the 2009 Workshop on Applications of Computer Vision (WACV); Snowbird, UT, USA. 7–8 December 2009; New York, NY, USA: IEEE; 2009. pp. 1–6. DOI
Picot A., Charbonnier S., Caplier A. On-Line Detection of Drowsiness Using Brain and Visual Information. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012;42:764–775. doi: 10.1109/TSMCA.2011.2164242. DOI
Schmidt J., Laarousi R., Stolzmann W., Karrer-Gauß K. Eye Blink Detection for Different Driver States in Conditionally Automated Driving and Manual Driving Using EOG and a Driver Camera. Behav. Res. Methods. 2018;50:1088–1101. doi: 10.3758/s13428-017-0928-0. PubMed DOI
Issa M.F., Juhasz Z. Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis. Brain Sci. 2019;9:355. doi: 10.3390/brainsci9120355. PubMed DOI PMC
Maddirala A.K., Veluvolu K.C. Eye-Blink Artifact Removal from Single Channel EEG with k-Means and SSA. Sci. Rep. 2021;11:11043. doi: 10.1038/s41598-021-90437-7. PubMed DOI PMC
Joyce C.A., Gorodnitsky I.F., Kutas M. Automatic Removal of Eye Movement and Blink Artifacts from EEG Data Using Blind Component Separation. Psychophysiology. 2004;41:313–325. doi: 10.1111/j.1469-8986.2003.00141.x. PubMed DOI
Gao J.F., Yang Y., Lin P., Wang P., Zheng C.X. Automatic Removal of Eye-Movement and Blink Artifacts from EEG Signals. Brain Topogr. 2010;23:105–114. doi: 10.1007/s10548-009-0131-4. PubMed DOI
Shahabi H., Moghimi S., Zamiri-Jafarian H. EEG Eye Blink Artifact Removal by EOG Modeling and Kalman Filter; Proceedings of the 2012 5th International Conference on BioMedical Engineering and Informatics; Chongqing, China. 16–18 October 2012; New York, NY, USA: IEEE; 2012. pp. 496–500. DOI
Gotch F. The Time Relations of the Photo-Electric Changes in the Eyeball of the Frog. J. Physiol. 1903;29:388–410. doi: 10.1113/jphysiol.1903.sp000965. PubMed DOI PMC
Einthoven W., Jolly W.A. The Form and Magnitude of the Electrical Response of the Eye to Stimulation by Light at Various Intensities. Q. J. Exp. Physiol. 1908;1:373–416. doi: 10.1113/expphysiol.1908.sp000026. DOI
Heckenlively J.R., Arden G.B., editors. Principles and Practice of Clinical Electrophysiology of Vision. 2nd ed. MIT Press; Cambridge, MA, USA: 2006.
Brigell M., Bach M., Barber C., Kawasaki K., Kooijman A. Guidelines for Calibration of Stimulus and Recording Parameters Used in Clinical Electrophysiology of Vision. Doc. Ophthalmol. 1998;95:1–14. doi: 10.1023/A:1001724411607. PubMed DOI
Johnson M.A., Massof R.W. The Photomyoclonic Reflex: An Artefact in the Clinical Electroretinogram. Br. J. Ophthalmol. 1982;66:368–378. doi: 10.1136/bjo.66.6.368. PubMed DOI PMC
Yip Y.W.Y., Man T.C., Pang C.P., Brelén M.E. Improving the Quality of Electroretinogram Recordings Using Active Electrodes. Exp. Eye Res. 2018;176:46–52. doi: 10.1016/j.exer.2018.06.007. PubMed DOI
Latifoglu F., Guven A., Durmus U., Oner A. Denoising of Electroretinogram Signals Using Empirical Mode Decomposition; Proceedings of the 2010 15th National Biomedical Engineering Meeting; Antalya, Turkey. 21–24 April 2010; New York, NY, USA: IEEE; 2010. pp. 1–4. DOI
Barraco R., Adorno D.P., Brai M., Tranchina L. A Comparison among Different Techniques for Human ERG Signals Processing and Classification. Phys. Medica. 2014;30:86–95. doi: 10.1016/j.ejmp.2013.03.006. PubMed DOI
De Santiago L., Ortiz del Castillo M., Garcia-Martin E., Rodrigo M.J., Sanchez Morla E.M., Cavaliere C., Cordón B., Miguel J.M., López A., Boquete L. Empirical Mode Decomposition-Based Filter Applied to Multifocal Electroretinograms in Multiple Sclerosis Diagnosis. Sensors. 2019;20:7. doi: 10.3390/s20010007. PubMed DOI PMC
Sarossy M., Aliahmad B., Kumar D.K. Discrete Wavelet Transform of the Electroretinogram for Glaucoma Classification; Choice of Mother Wavelet by Variable Ranking |IOVS| ARVO Journals. Investig. Ophthalmol. Vis. Sci. 2018;59:5098. PubMed
Adithya P.C., Alaql A., Tzekov R., Sankar R., Moreno W.A. Model Based Photopic Electroretinogram Source Separation: A Multiresolution Analysis Approach; Proceedings of the 2017 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS); Cozumel, Mexico. 5–7 June 2017; New York, NY, USA: IEEE; 2017. pp. 21–24. DOI
Ebdali S., Hashemi B., Jafarzadehpour E. Comparing the Variation of Time and Frequency Components of Electroretinogram in Patients with Retinitis Pigmentosa and Healthy Individuals. J. Mazandaran Univ. Med. Sci. 2017;26:110–121.
Vinken M.P.G.C., Rabotti C., Mischi M., Oei S.G. Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery: A Review of the Literature. Obstet. Gynecol. Surv. 2009;64:529–541. doi: 10.1097/OGX.0b013e3181a8c6b1. PubMed DOI
Miles A.M., Monga M., Richeson K.S. Correlation of External and Internal Monitoring of Uterine Activity in a Cohort of Term Patients. Am. J. Perinatol. 2001;18:137–140. doi: 10.1055/s-2001-14522. PubMed DOI
Lucovnik M., Maner W.L., Chambliss L.R., Blumrick R., Balducci J., Novak-Antolic Z., Garfield R.E. Noninvasive Uterine Electromyography for Prediction of Preterm Delivery. Am. J. Obstet. Gynecol. 2011;204:228.e1–228.e10. doi: 10.1016/j.ajog.2010.09.024. PubMed DOI PMC
Euliano T.Y., Marossero D., Nguyen M.T., Euliano N.R., Principe J., Edwards R.K. Spatiotemporal Electrohysterography Patterns in Normal and Arrested Labor. Am. J. Obstet. Gynecol. 2009;200:54.e1–54.e7. doi: 10.1016/j.ajog.2008.09.008. PubMed DOI
Rabotti C., Mischi M., van Laar J.O.E.H., Oei G.S., Bergmans J.W.M. Inter-Electrode Delay Estimators for Electrohysterographic Propagation Analysis. Physiol. Meas. 2009;30:745–761. doi: 10.1088/0967-3334/30/8/002. PubMed DOI
Rabotti C., Mischi M. Two-Dimensional Estimation of the Electrohysterographic Conduction Velocity; Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology; Buenos Aires, Argentina. 31 August–4 September 2010; New York, NY, USA: IEEE; 2010. pp. 4262–4265. PubMed DOI
Ye-Lin Y., Garcia-Casado J., Prats-Boluda G., Alberola-Rubio J., Perales A. Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Comput. Math. Methods Med. 2014;2014:470786. doi: 10.1155/2014/470786. PubMed DOI PMC
Marque C., Duchene J.M.G., Leclercq S., Panczer G.S., Chaumont J. Uterine EHG Processing for Obstetrical Monitorng. IEEE Trans. Biomed. Eng. 1986;BME-33:1182–1187. doi: 10.1109/TBME.1986.325698. PubMed DOI
Gondry J., Marque C., Duchene J., Cabrol D. Electrohysterography during Pregnancy: Preliminary Report. Biomed. Instrum. Technol. 1993;27:318–324. PubMed
Alberola-Rubio J., Garcia-Casado J., Ye-Lin Y., Prats-Boluda G., Perales A. Recording of Electrohysterogram Laplacian Potential; Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston, MA, USA. 30 August–3 September 2011; New York, NY, USA: IEEE; 2011. pp. 2510–2513. PubMed DOI
Rabotti C., Mischi M., van Laar J.O.E.H., Oei G.S., Bergmans J.W.M. Estimation of Internal Uterine Pressure by Joint Amplitude and Frequency Analysis of Electrohysterographic Signals. Physiol. Meas. 2008;29:829–841. doi: 10.1088/0967-3334/29/7/011. PubMed DOI
Hassan M.M., Terrien J., Muszynski C., Alexandersson A., Marque C., Karlsson B. Better Pregnancy Monitoring Using Nonlinear Correlation Analysis of External Uterine Electromyography. IEEE Trans. Biomed. Eng. 2013;60:1160–1166. doi: 10.1109/TBME.2012.2229279. PubMed DOI
Marque C.K., Terrien J., Rihana S., Germain G. Preterm Labour Detection by Use of a Biophysical Marker: The Uterine Electrical Activity. BMC Pregnancy Childbirth. 2007;7:S5. doi: 10.1186/1471-2393-7-S1-S5. PubMed DOI PMC
Euliano T.Y., Nguyen M.T., Darmanjian S., McGorray S.P., Euliano N., Onkala A., Gregg A.R. Monitoring Uterine Activity during Labor: A Comparison of 3 Methods. Am. J. Obstet. Gynecol. 2013;208:66.e1–66.e6. doi: 10.1016/j.ajog.2012.10.873. PubMed DOI PMC
Euliano T.Y., Nguyen M.T., Marossero D., Edwards R.K. Monitoring Contractions in Obese Parturients: Electrohysterography Compared With Traditional Monitoring. Obstet. Gynecol. 2007;109:1136–1140. doi: 10.1097/01.AOG.0000258799.24496.93. PubMed DOI
Jezewski J., Horoba K., Matonia A., Wrobel J. Quantitative Analysis of Contraction Patterns in Electrical Activity Signal of Pregnant Uterus as an Alternative to Mechanical Approach. Physiol. Meas. 2005;26:753–767. doi: 10.1088/0967-3334/26/5/014. PubMed DOI
Jacod B.C., Graatsma E.M., Van Hagen E., Visser G.H.A. A Validation of Electrohysterography for Uterine Activity Monitoring during Labour. J. Matern. Fetal Neonatal Med. 2010;23:17–22. doi: 10.3109/14767050903156668. PubMed DOI
Schlembach D., Maner W.L., Garfield R.E., Maul H. Monitoring the Progress of Pregnancy and Labor Using Electromyography. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009;144:S33–S39. doi: 10.1016/j.ejogrb.2009.02.016. PubMed DOI
Garcia-Gonzalez M.T., Charleston-Villalobos S., Vargas-Garcia C., Gonzalez-Camarena R., Aljama-Corrales T. Characterization of EHG Contractions at Term Labor by Nonlinear Analysis; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; New York, NY, USA: IEEE; 2013. pp. 7432–7435. PubMed DOI
Acharya U.R., Sudarshan V.K., Rong S.Q., Tan Z., Lim C.M., Koh J.E., Nayak S., Bhandary S.V. Automated Detection of Premature Delivery Using Empirical Mode and Wavelet Packet Decomposition Techniques with Uterine Electromyogram Signals. Comput. Biol. Med. 2017;85:33–42. doi: 10.1016/j.compbiomed.2017.04.013. PubMed DOI
Leman H., Marque C. Rejection of the Maternal Electrocardiogram in the Electrohysterogram Signal. IEEE Trans. Biomed. Eng. 2000;47:1010–1017. doi: 10.1109/10.855927. PubMed DOI
Beiranvand M., Shahbakhti M., Eslamizadeh M., Bavi M., Mohammadifar S. Investigating Wavelet Energy Vector for Pre-Term Labor Detection Using EHG Signals; Proceedings of the 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA); Poznan, Poland. 22–24 September 2017; New York, NY, USA: IEEE; 2017. pp. 269–274. DOI
Taralunga D.D., Ungureanu M., Hurezeanu B., Gussi I., Strungaru R. Empirical Mode Decomposition Applied for Non-Invasive Electrohysterograhic Signals Denoising; Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan, Italy. 25–29 August 2015; New York, NY, USA: IEEE; 2015. pp. 4134–4137. PubMed DOI
Ren P., Yao S., Li J., Valdes-Sosa P.A., Kendrick K.M. Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLoS ONE. 2015;10:e0132116. doi: 10.1371/journal.pone.0132116. PubMed DOI PMC
Chkeir A., Marque C., Terrien J., Karlsson B. Denoising Electrohysterogram via Empirical Mode Decomposition; Proceedings of the ISSNIP Biosignals. And Biorobotics Conference; Vitoria, Brazil. 4–6 January 2010; pp. 32–35.
Hassan M., Boudaoud S., Terrien J., Karlsson B., Marque C. Combination of Canonical Correlation Analysis and Empirical Mode Decomposition Applied to Denoising the Labor Electrohysterogram. IEEE Trans. Biomed. Eng. 2011;58:2441–2447. doi: 10.1109/TBME.2011.2151861. PubMed DOI
Hoseinzadeh S., Amirani M.C. Use of Electro Hysterogram (EHG) Signal to Diagnose Preterm Birth; Proceedings of the Electrical Engineering (ICEE), Iranian Conference; Mashhad, Iran. 8–10 May 2018; New York, NY, USA: IEEE; 2018. pp. 1477–1481. DOI