Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach-Part I: Cardiac Signals

. 2021 Jul 30 ; 21 (15) : . [epub] 20210730

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34372424

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project within the Operational Programme Research, Development and Education
SP2021/32 Ministry of Education of the Czech Republic

Advanced signal processing methods are one of the fastest developing scientific and technical areas of biomedical engineering with increasing usage in current clinical practice. This paper presents an extensive literature review of the methods for the digital signal processing of cardiac bioelectrical signals that are commonly applied in today's clinical practice. This work covers the definition of bioelectrical signals. It also covers to the extreme extent of classical and advanced approaches to the alleviation of noise contamination such as digital adaptive and non-adaptive filtering, signal decomposition methods based on blind source separation and wavelet transform.

Zobrazit více v PubMed

Lin Q., Song S., Castro I.D., Jiang H., Konijnenburg M., van Wegberg R., Biswas D., Stanzione S., Sijbers W., van Hoof C., et al. Wearable Multiple Modality Bio-signal Recording and Processing on Chip: A Review. IEEE Sens. J. 2020;21:1108–1123. doi: 10.1109/JSEN.2020.3016115. DOI

Gifta G., Rani D.G.N. Power Approaches for Biosensors based Bio-Medical Devices. ECS J. Solid State Sci. Technol. 2020;9:121005.

Choi H.S. Drowsy driving detection using neural network with backpropagation algorithm implemented by FPGA. Concurr. Comput. Pract. Exp. 2020;32:e5471. doi: 10.1002/cpe.5471. DOI

Hadjileontiadis L.J., Rekanos I.T., Panas S.M. Wiley Encyclopedia of Biomedical Engineering. John Wiley Sons, Inc.; Hoboken, NJ, USA: 2006. Bioacoustic signals.

Kaniusas E. Biomedical Signals and Sensors II. Springer; Berlin/Heidelberg, Germany: 2015. Sensing by acoustic biosignals; pp. 1–90.

Inan O.T., Migeotte P.F., Park K.S., Etemadi M. Ballistocardiography and seismocardiography: A review of recent advances. IEEE J. Biomed. Health Inform. 2015;19:1414–1427. doi: 10.1109/JBHI.2014.2361732. PubMed DOI

Criée C., Sorichter S., Smith H., Kardos P., Merget R., Heise D., Berdel D., Köhler D., Magnussen H., Marek W., et al. Body plethysmography—Its principles and clinical use. Respir. Med. 2011;105:959–971. doi: 10.1016/j.rmed.2011.02.006. PubMed DOI

Fortino G., Giampà V. PPG-based methods for non invasive and continuous blood pressure measurement: An overview and development issues in body sensor networks; Proceedings of the 2010 IEEE International Workshop on Medical Measurements and Applications; Ottawa, ON, Canada. 30 April–1 May 2010; pp. 10–13.

Korostynska O., Arshak K., Gill E., Arshak A. Materials and techniques for in vivo pH monitoring. IEEE Sens. J. 2007;8:20–28. doi: 10.1109/JSEN.2007.912522. DOI

Waddell W.J., Bates R.G. Intracellular pH. Physiol. Rev. 1969;49:285–329. doi: 10.1152/physrev.1969.49.2.285. PubMed DOI

Ring E., McEvoy H., Jung A., Zuber J., Machin G. New standards for devices used for the measurement of human body temperature. J. Med. Eng. Technol. 2010;34:249–253. doi: 10.3109/03091901003663836. PubMed DOI

Sund-Levander M., Grodzinsky E. Assessment of body temperature measurement options. Br. J. Nurs. 2013;22:942–950. doi: 10.12968/bjon.2013.22.16.942. PubMed DOI

Singh Y.N., Singh S.K., Ray A.K. Bioelectrical Signals as Emerging Biometrics: Issues and Challenges. ISRN Signal Process. 2012;2012:1–13. doi: 10.5402/2012/712032. DOI

Shortliffe E.H., Barnett G.O. Biomedical Data: Their Acquisition, Storage, and Use. In: Shortliffe E.H., Cimino J.J., editors. Biomedical Informatics. Springer; New York, NY, USA: 2006. pp. 46–79. DOI

Rangayyan R.M. Biomedical Signal Analysis. 2nd ed. IEEE Press; Piscataway, NJ, USA: John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2015. (IEEE Press Series in Biomedical Engineering).

Bruce E.N. Biomedical Signal Processing and Signal Modeling. Wiley; New York, NY, USA: 2001. (Wiley Series in Telecommunications and Signal Processing).

Clifford G.D., editor. Advanced Methods and Tools for ECG Data Analysis. Engineering in Medicine & Biology, Artech House; Boston, MA, USA: 2006.

Kahankova R., Martinek R., Jaros R., Behbehani K., Matonia A., Jezewski M., Behar J.A. A Review of Signal Processing Techniques for Non-Invasive Fetal Electrocardiography. IEEE Rev. Biomed. Eng. 2020;13:51–73. doi: 10.1109/RBME.2019.2938061. PubMed DOI

Sameni R., Clifford G.D. A Review of Fetal ECG Signal Processing Issues and Promising Directions. Open Pacing Electrophysiol. Ther. J. 2010 doi: 10.2174/1876536X01003010004. PubMed DOI PMC

Macfarlane P.W., Edenbrandt L., Pahlm O. 12-Lead Vectorcardiography. Butterworth Heinemann; Oxford, UK: Boston, MA, USA: 1995.

Vozda M., Cerny M. Methods for Derivation of Orthogonal Leads from 12-Lead Electrocardiogram: A Review. Biomed. Signal Process. Control. 2015;19:23–34. doi: 10.1016/j.bspc.2015.03.001. DOI

Jurcak V., Tsuzuki D., Dan I. 10/20, 10/10, and 10/5 Systems Revisited: Their Validity as Relative Head-Surface-Based Positioning Systems. NeuroImage. 2007;34:1600–1611. doi: 10.1016/j.neuroimage.2006.09.024. PubMed DOI

Ball T., Kern M., Mutschler I., Aertsen A., Schulze-Bonhage A. Signal Quality of Simultaneously Recorded Invasive and Non-Invasive EEG. NeuroImage. 2009;46:708–716. doi: 10.1016/j.neuroimage.2009.02.028. PubMed DOI

Luo J., Gao X., Zhu X., Wang B., Lu N., Wang J. Motor Imagery EEG Classification Based on Ensemble Support Vector Learning. Comput. Methods Programs Biomed. 2020;193:105464. doi: 10.1016/j.cmpb.2020.105464. PubMed DOI

Markand O.N. Clinical Evoked Potentials. Springer International Publishing; Cham, Switzerland: 2020. Basic Techniques of Evoked Potential Recording; pp. 1–23. DOI

Wang D.D., Chen W., Starr P.A., de Hemptinne C. Local Field Potentials and ECoG. In: Pouratian N., Sheth S.A., editors. Stereotactic and Functional Neurosurgery. Springer International Publishing; Cham, Switzerland: 2020. pp. 107–117. DOI

Nakasatp N., Levesque M.F., Barth D.S., Baumgartner C., Rogers R.L., Sutherling W.W. Comparisons of MEG, EEG, and ECoG Source Localization in Neocortical Partial Epilepsy in Humans. Electroencephalogr. Clin. Neurophysiol. 1994;91:171–178. doi: 10.1016/0013-4694(94)90067-1. PubMed DOI

Langmeier J., Krejčířová D., Langmeier M. Vývojová Psychologie s Úvodem do Vývojové Neurofyziologie. H & H; Praha, Czech Republic: 1998.

Abdelghani M.N., Abbas J.J., Jung R. Peripheral Nerve Interface Applications, EMG/ENG. In: Jaeger D., Jung R., editors. Encyclopedia of Computational Neuroscience. Springer; New York, NY, USA: 2014. pp. 1–10. DOI

Rash G.S., Quesada P. [(accessed on 30 July 2021)];Electromyography Fundamentals. 2003 Volume 4 Retrieved February. Available online: http://people.stfx.ca/smackenz/Courses/HK474/Labs/EMG%20Lab/EMGfundamentals.pdf.

Merletti R., Parker P., editors. Electromyography: Physiology, Engineering, and Noninvasive Applications. IEEE/John Wiley & Sons; Hoboken, NJ, USA: 2004. (IEEE Press Series in Biomedical Engineering).

Komorowski D., Pietraszek S., Tkacz E., Provaznik I. The Extraction of the New Components from Electrogastrogram (EGG), Using Both Adaptive Filtering and Electrocardiographic (ECG) Derived Respiration Signal. BioMed. Eng. Online. 2015;14:60. doi: 10.1186/s12938-015-0054-0. PubMed DOI PMC

Riezzo G., Russo F., Indrio F. Electrogastrography in Adults and Children: The Strength, Pitfalls, and Clinical Significance of the Cutaneous Recording of the Gastric Electrical Activity. BioMed Res. Int. 2013;2013:1–14. doi: 10.1155/2013/282757. PubMed DOI PMC

Heide W., Koenig E., Trillenberg P., Kömpf D., Zee D.S. Electrooculography: Technical Standards and Applications. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999;52:223–240. PubMed

López A., Ferrero F., Villar J.R., Postolache O. High-Performance Analog Front-End (AFE) for EOG Systems. Electronics. 2020;9:970. doi: 10.3390/electronics9060970. DOI

Brigell M., Bach M., Barber C., Kawasaki K., Kooijman A. Guidelines for Calibration of Stimulus and Recording Parameters Used in Clinical Electrophysiology of Vision. Doc. Ophthalmol. 1998;95:1–14. doi: 10.1023/A:1001724411607. PubMed DOI

Heckenlively J.R., Arden G.B., editors. Principles and Practice of Clinical Electrophysiology of Vision. 2nd ed. MIT Press; Cambridge, MA, USA: 2006.

Marque C., Duchene J.M.G., Leclercq S., Panczer G.S., Chaumont J. Uterine EHG Processing for Obstetrical Monitorng. IEEE Trans. Biomed. Eng. 1986;BME-33:1182–1187. doi: 10.1109/TBME.1986.325698. PubMed DOI

Lucovnik M., Maner W.L., Chambliss L.R., Blumrick R., Balducci J., Novak-Antolic Z., Garfield R.E. Noninvasive Uterine Electromyography for Prediction of Preterm Delivery. Am. J. Obstet. Gynecol. 2011;204:228.e1–228.e10. doi: 10.1016/j.ajog.2010.09.024. PubMed DOI PMC

Rabotti C., Mischi M., van Laar J.O.E.H., Oei G.S., Bergmans J.W.M. Estimation of Internal Uterine Pressure by Joint Amplitude and Frequency Analysis of Electrohysterographic Signals. Physiol. Meas. 2008;29:829–841. doi: 10.1088/0967-3334/29/7/011. PubMed DOI

Islam M.K., Rastegarnia A., Sanei S. Signal Processing Techniques for Computational Health Informatics. Springer; Berlin/Heidelberg, Germany: 2021. Signal Artifacts and Techniques for Artifacts and Noise Removal; pp. 23–79.

Sweeney K., Ward T., Mcloone S. Artifact Removal in Physiological Signals-Practices and Possibilities. IEEE Trans. Inf. Technol. Biomed. 2012;16:488–500. doi: 10.1109/TITB.2012.2188536. PubMed DOI

Tudosa I., Adochiei N. LMS algorithm derivatives used in real-time filtering of ECG signals: A study case on performance evaluation; Proceedings of the 2012 International Conference and Exposition on Electrical and Power Engineering; Iasi, Romania. 25–27 October 2012; pp. 565–570.

Ren A., Du Z., Li J., Hu F., Yang X., Abbas H. Adaptive Interference Cancellation of ECG Signals. Sensors. 2017;17:942. doi: 10.3390/s17050942. PubMed DOI PMC

Suchetha M., Kumaravel N. Empirical Mode Decomposition-Based Subtraction Techniques for 50 Hz Interference Reduction from Electrocardiogram. IETE J. Res. 2013;59:55. doi: 10.4103/0377-2063.110631. DOI

Watford C. Understanding ECG Filtering. [(accessed on 30 July 2021)];2014 Available online: https://www.rigacci.org/wiki/lib/exe/fetch.php/tecnica/misc/ecg90a/understanding-ecg-filtering.pdf.

Dixon A.M., Allstot E.G., Gangopadhyay D., Allstot D.J. Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 2012;6:156–166. doi: 10.1109/TBCAS.2012.2193668. PubMed DOI

Allstot E.G., Chen A.Y., Dixon A.M., Gangopadhyay D., Allstot D.J. Compressive sampling of ECG bio-signals: Quantization noise and sparsity considerations; Proceedings of the 2010 Biomedical Circuits and Systems Conference (BioCAS); Paphos, Cyprus. 3–5 November 2010; pp. 41–44.

Williams G. An Oversampled Analog to Digital Converter for Acquiring Neural Signals. [(accessed on 30 July 2021)];2009 Available online: https://openscholarship.wustl.edu/etd/462/

Zaidi A., Athley F., Medbo J., Gustavsson U., Durisi G., Chen X. 5G Physical Layer: Principles, Models and Technology Components. Academic Press; Cambridge, MA, USA: 2018.

Bovik A.C. The Essential Guide to Image Processing. Academic Press; Cambridge, MA, USA: 2009.

Rouphael T.J. Wireless Receiver Architectures and Design: Antennas, RF, Synthesizers, Mixed Signal, and Digital Signal Processing. Academic Press; Cambridge, MA, USA: 2014.

Daniel Ţ.D., Neagu M. Compendium of New Techniques in Harmonic Analysis. IntechOpen; London, UK: 2018. Cancelling harmonic power line interference in biopotentials; p. 19.

Zivanovic M., González-Izal M. Simultaneous powerline interference and baseline wander removal from ECG and EMG signals by sinusoidal modeling. Med. Eng. Phys. 2013;35:1431–1441. doi: 10.1016/j.medengphy.2013.03.015. PubMed DOI

Chowdhury R., Reaz M., Ali M., Bakar A., Chellappan K., Chang T. Surface Electromyography Signal Processing and Classification Techniques. Sensors. 2013;13:12431–12466. doi: 10.3390/s130912431. PubMed DOI PMC

Brown E.A., Ross J.D., Blum R.A., Nam Y., Wheeler B.C., DeWeerth S.P. Stimulus-artifact elimination in a multi-electrode system. IEEE Trans. Biomed. Circuits Syst. 2008;2:10–21. doi: 10.1109/TBCAS.2008.918285. PubMed DOI

Wilson F.N., Macleod A., Barker P.S. The Potential Variations Produced by the Heart Beat at the Apices of Einthoven’s Triangle. Am. Heart J. 1931;7:207–211. doi: 10.1016/S0002-8703(31)90411-0. DOI

Herrmann G.R., Wilson F.N. Ventricular Hypertrophy. A Comparison of Electrocardiographic and Postmortem Observations. Heart. 1922;9:1921–1922.

Penhaker M., Augustynek M. Zdravotnické Elektrické Přístroje 1. VSB—Technical University of Ostrava; Ostrava, Czech Republic: 2013.

Nyni K., Vincent L.K., Varghese L., Liya V., Johny A.N., Yesudas C. Wireless Health Monitoring System for ECG, EMG and EEG Detecting; Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS); Coimbatore, India. 17–18 March 2017; pp. 1–5. DOI

Vogel B., Claessen B.E., Arnold S.V., Chan D., Cohen D.J., Giannitsis E., Gibson C.M., Goto S., Katus H.A., Kerneis M., et al. ST-segment elevation myocardial infarction. Nat. Rev. Dis. Prim. 2019;5:1–20. doi: 10.1038/s41572-019-0090-3. PubMed DOI

Ribas Mercau N.A. Characterization and Handling of Disturbances within Electrocardiographic Recordings of Different Origin. [(accessed on 30 July 2021)];2014 Available online: https://upcommons.upc.edu/handle/2099.1/21684.

Jaros R., Martinek R., Kahankova R. Non-Adaptive Methods for Fetal ECG Signal Processing: A Review and Appraisal. Sensors. 2018;18:3648. doi: 10.3390/s18113648. PubMed DOI PMC

Lu J., Luo J., Xie Z., Xie K., Cheng Y., Xie S. Dual temporal convolutional network for single-lead fibrillation waveform extraction. Neural Comput. Appl. 2021:1–12. doi: 10.1007/s00521-021-06148-7. DOI

Ay A.N., Yildiz M.Z., Boru B. NI LabVIEW Kullanarak EKG Sinyallerinin Gerçek Zamanlı Özellik Çıkarımı. SAÜ Fen Bilim. Enstitüsü Derg. 2017;21:576–583. doi: 10.16984/saufenbilder.287418. DOI

Vojtech L., Bortel R., Neruda M., Kozak M. Wearable Textile Electrodes for ECG Measurement. Adv. Electr. Electron. Eng. 2013;11:410–414. doi: 10.15598/aeee.v11i5.889. DOI

Jagtap S.K., Uplane M.D. The Impact of Digital Filtering to ECG Analysis: Butterworth Filter Application; Proceedings of the 2012 International Conference on Communication, Information & Computing Technology (ICCICT); Mumbai, India. 19–20 October 2012; pp. 1–6. DOI

Sun C.Y., Lee S.Y. A fifth-order butterworth OTA-C LPF with multiple-output differential-input OTA for ECG applications. IEEE Trans. Circuits Syst. II Express Briefs. 2017;65:421–425. doi: 10.1109/TCSII.2017.2695366. DOI

Singhal A., Singh P., Fatimah B., Pachori R.B. An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. Biomed. Signal Process. Control. 2020;57:101741. doi: 10.1016/j.bspc.2019.101741. DOI

Rahman M.Z.U., Shaik R.A., Rama Koti Reddy D. Efficient Sign Based Normalized Adaptive Filtering Techniques for Cancelation of Artifacts in ECG Signals: Application to Wireless Biotelemetry. Signal Process. 2011;91:225–239. doi: 10.1016/j.sigpro.2010.07.002. DOI

Zhang Z., Silva I., Wu D., Zheng J., Wu H., Wang W. Adaptive Motion Artefact Reduction in Respiration and ECG Signals for Wearable Healthcare Monitoring Systems. Med. Biol. Eng. Comput. 2014;52:1019–1030. doi: 10.1007/s11517-014-1201-7. PubMed DOI

Jobert M., Tismer C., Poiseau E., Schulz H. Wavelets—A New Tool in Sleep Biosignal Analysis. J. Sleep Res. 1994;3:223–232. doi: 10.1111/j.1365-2869.1994.tb00135.x. PubMed DOI

Addison P., Walker J., Guido R. Time–Frequency Analysis of Biosignals. IEEE Eng. Med. Biol. Mag. 2009;28:14–29. doi: 10.1109/MEMB.2009.934244. PubMed DOI

Amri M.F., Rizqyawan M.I., Turnip A. ECG Signal Processing Using Offline-Wavelet Transform Method Based on ECG-IoT Device; Proceedings of the 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE); Semarang, Indonesia. 19–20 October 2016; pp. 1–6. DOI

Kumar A., Komaragiri R., Kumar M. Design of Wavelet Transform Based Electrocardiogram Monitoring System. ISA Trans. 2018;80:381–398. doi: 10.1016/j.isatra.2018.08.003. PubMed DOI

Kumar A., Komaragiri R., Kumar M. Heart Rate Monitoring and Therapeutic Devices: A Wavelet Transform Based Approach for the Modeling and Classification of Congestive Heart Failure. ISA Trans. 2018;79:239–250. doi: 10.1016/j.isatra.2018.05.003. PubMed DOI

Subramanian B., Ramasamy A. Investigation on the Compression of Electrocardiogram Signals Using Dual Tree Complex Wavelet Transform. IETE J. Res. 2017;63:392–402. doi: 10.1080/03772063.2016.1275988. DOI

Sudarshan V.K., Acharya U., Oh S.L., Adam M., Tan J.H., Chua C.K., Chua K.P., Tan R.S. Automated Diagnosis of Congestive Heart Failure Using Dual Tree Complex Wavelet Transform and Statistical Features Extracted from 2 s of ECG Signals. Comput. Biol. Med. 2017;83:48–58. doi: 10.1016/j.compbiomed.2017.01.019. PubMed DOI

Sharma T., Sharma K.K. QRS Complex Detection in ECG Signals Using the Synchrosqueezed Wavelet Transform. IETE J. Res. 2016;62:885–892. doi: 10.1080/03772063.2016.1221744. DOI

Flandrin P., Rilling G., Goncalves P. Empirical Mode Decomposition as a Filter Bank. IEEE Signal Process. Lett. 2004;11:112–114. doi: 10.1109/LSP.2003.821662. DOI

Blanco-Velasco M., Weng B., Barner K.E. ECG Signal Denoising and Baseline Wander Correction Based on the Empirical Mode Decomposition. Comput. Biol. Med. 2008;38:1–13. doi: 10.1016/j.compbiomed.2007.06.003. PubMed DOI

Pal S., Mitra M. Empirical Mode Decomposition Based ECG Enhancement and QRS Detection. Comput. Biol. Med. 2012;42:83–92. doi: 10.1016/j.compbiomed.2011.10.012. PubMed DOI

Xiong P., Wang H., Liu M., Liu X. Denoising autoencoder for eletrocardiogram signal enhancement. J. Med. Imaging Health Inform. 2015;5:1804–1810. doi: 10.1166/jmihi.2015.1649. DOI

Chiang H.T., Hsieh Y.Y., Fu S.W., Hung K.H., Tsao Y., Chien S.Y. Noise reduction in ECG signals using fully convolutional denoising autoencoders. IEEE Access. 2019;7:60806–60813. doi: 10.1109/ACCESS.2019.2912036. DOI

Antczak K. Deep recurrent neural networks for ECG signal denoising. arXiv. 20181807.11551

Arsene C.T., Hankins R., Yin H. Deep learning models for denoising ECG signals; Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO); A Coruna, Spain. 2–6 September 2019; pp. 1–5.

Fatimah B., Singh P., Singhal A., Pramanick D., Pranav S., Pachori R.B. Efficient detection of myocardial infarction from single lead ECG signal. Biomed. Signal Process. Control. 2021;68:102678. doi: 10.1016/j.bspc.2021.102678. DOI

Yang X., Hu Q., Li S. Electrocardiogram classification of lead convolutional neural network based on fuzzy algorithm. J. Intell. Fuzzy Syst. 2020;38:3539–3548. doi: 10.3233/JIFS-179576. DOI

Mousavi S., Afghah F., Khadem F., Acharya U.R. ECG Language processing (ELP): A new technique to analyze ECG signals. Comput. Methods Programs Biomed. 2021;202:105959. doi: 10.1016/j.cmpb.2021.105959. PubMed DOI PMC

Rodrigues J., Belo D., Gamboa H. Noise Detection on ECG Based on Agglomerative Clustering of Morphological Features. Comput. Biol. Med. 2017;87:322–334. doi: 10.1016/j.compbiomed.2017.06.009. PubMed DOI

Kumar S., Panigrahy D., Sahu P. Denoising of Electrocardiogram (ECG) Signal by Using Empirical Mode Decomposition (EMD) with Non-Local Mean (NLM) Technique. Biocybern. Biomed. Eng. 2018;38:297–312. doi: 10.1016/j.bbe.2018.01.005. DOI

Rakshit M., Das S. An Efficient ECG Denoising Methodology Using Empirical Mode Decomposition and Adaptive Switching Mean Filter. Biomed. Signal Process. Control. 2018;40:140–148. doi: 10.1016/j.bspc.2017.09.020. DOI

Lu L., Yan J., de Silva C.W. Feature Selection for ECG Signal Processing Using Improved Genetic Algorithm and Empirical Mode Decomposition. Measurement. 2016;94:372–381. doi: 10.1016/j.measurement.2016.07.043. DOI

Xiong P., Wang H., Liu M., Zhou S., Hou Z., Liu X. ECG signal enhancement based on improved denoising auto-encoder. Eng. Appl. Artif. Intell. 2016;52:194–202. doi: 10.1016/j.engappai.2016.02.015. DOI

Rajankar S.O., Talbar S.N. An optimum ECG denoising with wavelet neural network; Proceedings of the 2015 International Conference on Pervasive Computing (ICPC); Pune, India. 8–10 January 2015; pp. 1–4.

Poungponsri S., Yu X.H. An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. Neurocomputing. 2013;117:206–213. doi: 10.1016/j.neucom.2013.02.010. DOI

Liang Y., Yin S., Tang Q., Zheng Z., Elgendi M., Chen Z. Deep learning algorithm classifies heartbeat events based on electrocardiogram signals. Front. Physiol. 2020;11:569050. doi: 10.3389/fphys.2020.569050. PubMed DOI PMC

Schmitt O.H. Symposium on Electrocardiography and Vectorcardiography: The Present Status of Vectorcardiography. AMA Arch. Intern. Med. 1955;96:574. doi: 10.1001/archinte.1955.00250160016002. PubMed DOI

Abeysekera R. Some Physiologically Meaningful Features Obtained from the Vectorcardiography. IEEE Eng. Med. Biol. Mag. 1991;10:58–63. doi: 10.1109/51.84192. PubMed DOI

Rubel P., Benhadid I., Fayn J. Quantitative Assessment of Eight Different Methods for Synthesizing Frank VCGs from Simultaneously Recorded Standard ECG Leads. J. Electrocardiol. 1991;24:197–202. doi: 10.1016/S0022-0736(10)80045-7. PubMed DOI

Levkov C.L. Orthogonal Electrocardiogram Derived from the Limb and Chest Electrodes of the Conventional 12-Lead System. Med. Biol. Eng. Comput. 1987;25:155–164. doi: 10.1007/BF02442844. PubMed DOI

Hyttinen J., Viik J., Eskola H., Malmivuo J. Computers in Cardiology 1995. IEEE; Vienna, Austria: 1995. Optimization and Comparison of Derived Frank VECG Lead Systems Employing an Accurate Thorax Model; pp. 385–388. DOI

McFee R., Parungao A. An Orthogonal Lead System for Clinical Electrocardiography. Am. Heart J. 1961;62:93–100. doi: 10.1016/0002-8703(61)90488-4. DOI

Malmivuo J. The SVEC III Vectorcardiographic Lead System. IEEE Eng. Med. Biol. Mag. 2004;23:47–51. doi: 10.1109/MEMB.2004.1378633. PubMed DOI

Fischmann E.J., Elliott B.J. Experimental Comparison of “Parallel Grid Leads” with Simple Bipolar, and the SVEC-III, Frank, and McFee-Parungao Systems. I. Sagittal Leads. Am. Heart J. 1964;67:792–803. doi: 10.1016/0002-8703(64)90180-2. PubMed DOI

Malmivuo J., Plonsey R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press; New York, NY, USA: 1995.

Kors J.A., Van Herpen G., Sittig A.C., Van Bemmel J.H. Reconstruction of the Frank Vectorcardiogram from Standard Electrocardiographic Leads: Diagnostic Comparison of Different Methods. Eur. Heart J. 1990;11:1083–1092. doi: 10.1093/oxfordjournals.eurheartj.a059647. PubMed DOI

Dawson D., Yang H., Malshe M., Bukkapatnam S.T., Benjamin B., Komanduri R. Linear Affine Transformations between 3-Lead (Frank XYZ Leads) Vectorcardiogram and 12-Lead Electrocardiogram Signals. J. Electrocardiol. 2009;42:622–630. doi: 10.1016/j.jelectrocard.2009.05.007. PubMed DOI

Lingman M., Hartford M., Karlsson T., Herlitz J., Rubulis A., Caidahl K., Bergfeldt L. Transient Repolarization Alterations Dominate the Initial Phase of an Acute Anterior Infarction—A Vectorcardiography Study. J. Electrocardiol. 2014;47:478–485. doi: 10.1016/j.jelectrocard.2014.04.017. PubMed DOI

Sederholm M. The Origin of Monitoring of Acute Myocardial Infarction with Continuous Vectorcardiography. J. Electrocardiol. 2014;47:418–424. doi: 10.1016/j.jelectrocard.2014.04.002. PubMed DOI

Cortez D., Bos J.M., Ackerman M.J. Vectorcardiography Identifies Patients with Electrocardiographically Concealed Long QT Syndrome. Heart Rhythm. 2017;14:894–899. doi: 10.1016/j.hrthm.2017.03.003. PubMed DOI

Correa R., Arini P.D., Valentinuzzi M.E., Laciar E. Novel Set of Vectorcardiographic Parameters for the Identification of Ischemic Patients. Med. Eng. Phys. 2013;35:16–22. doi: 10.1016/j.medengphy.2012.03.005. PubMed DOI

van Bemmel J.H., Kors J.A., van Herpen G. Combination of Diagnostic Classifications from ECG and VCG Computer Interpretations. J. Electrocardiol. 1992;25:126–130. doi: 10.1016/0022-0736(92)90078-E. PubMed DOI

Edenbrandt L., Pahlm O. Vectorcardiogram Synthesized from a 12-Lead ECG: Superiority of the Inverse Dower Matrix. J. Electrocardiol. 1988;21:361–367. doi: 10.1016/0022-0736(88)90113-6. PubMed DOI

Schreck D.M., Fishberg R.D. Derivation of the 12-Lead Electrocardiogram and 3-Lead Vectorcardiogram. Am. J. Emerg. Med. 2013;31:1183–1190. doi: 10.1016/j.ajem.2013.04.037. PubMed DOI

Burger H.C., Van Milaan J.B., Den Boer W. Comparison of Different Systems of Vectorcardiography. Heart. 1952;14:401–405. doi: 10.1136/hrt.14.3.401. PubMed DOI PMC

Guillem M.S., Climent A.M., Bollmann A., Husser D., Millet J., Castells F. Limitations of Dower’s Inverse Transform for the Study of Atrial Loops During Atrial Fibrillation: Limitations of Dower’s Inverse Transform for AF. Pacing Clin. Electrophysiol. 2009;32:972–980. doi: 10.1111/j.1540-8159.2009.02426.x. PubMed DOI

Medhat M., Abdelraheem T. Human Identification Using Main Loop of the VCG Contour; Proceedings of the 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand—Conference 2011; Khon Kaen, Thailand. 17–19 May 2011; pp. 1011–1014. DOI

Ge D. Detecting Myocardial Infraction Using VCG Leads; Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering; Shanghai, China. 16–18 May 2008; pp. 2217–2220. DOI

Guillem M.S., Sahakian A.V., Swiryn S. Derivation of Orthogonal Leads from the 12-Lead ECG. Accuracy of a Single Transform for the Derivation of Atrial and Ventricular Waves; Proceedings of the 2006 Computers in Cardiology; Valencia, Spain. 17–20 September 2006; pp. 249–252.

Correa R., Laciar E., Arini P., Jane R. Analysis of QRS Loop Changes in the Beat-to-Beat Vectocardiogram of Ischemic Patients Undergoing PTCA; Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Minneapolis, MN, USA. 3–6 September 2009; pp. 1750–1753. PubMed DOI

Correa R., Arini P., Correa L., Valentinuzzi M., Laciar E. Analysis of Vectorcardiographic Dynamic Changes in Patients with Acute Myocardial Ischemia. J. Phys. Conf. Ser. 2013;477:012032. doi: 10.1088/1742-6596/477/1/012032. DOI

Yang H. Multiscale Recurrence Quantification Analysis of Spatial Cardiac Vectorcardiogram Signals. IEEE Trans. Biomed. Eng. 2011;58:339–347. doi: 10.1109/TBME.2010.2063704. PubMed DOI

Tripathy R.K., Dandapat S. Detection of Myocardial Infarction from Vectorcardiogram Using Relevance Vector Machine. Signal Image Video Process. 2017;11:1139–1146. doi: 10.1007/s11760-017-1068-9. DOI

Dıker A., Avci E., Cömert Z., Avci D., Kaçar E., Serhatlioğlu İ. Classification of ECG signal by using machine learning methods; Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU); Izmir, Turkey. 2–5 May 2018; pp. 1–4.

Gustafson D.E., Willsky A.S., Wang J.Y., Lancaster M.C., Triebwasser J.H. ECG/VCG Rhythm Diagnosis Using Statistical Signal Analysis-I. Identification of Persistent Rhythms. IEEE Trans. Biomed. Eng. 1978;BME-25:344–353. doi: 10.1109/TBME.1978.326260. PubMed DOI

Prabhakararao E., Dandapat S. Automated Detection of Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet Transform Based Features. IEEE Sens. Lett. 2020;4:1–4. doi: 10.1109/LSENS.2020.2992760. DOI

Prabhakararao E., Dandapat S. A Weighted SVM Based Approach for Automatic Detection of Posterior Myocardial Infarction Using VCG Signals; Proceedings of the 2019 National Conference on Communications (NCC); Bangalore, India. 20–23 February 2019; Bangalore, India: IEEE; 2019. pp. 1–6. DOI

Vozda M. Ph.D. Thesis. VSB-Technical University of Ostrava; Ostrava, Czech Republic: 2016. Spatio-Temporal Analysis of Vectorcardiographic.

Karsikas M. Ph.D. Thesis. Acta Universitatis Oululensis, University of Oulu; Oulu, Finland: 2011. New Methods for Vectorcardiographic Signal Processing.

Lipponen J.A., Tarvainen M.P., Laitinen T., Lyyra-Laitinen T., Karjalainen P.A. A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics. IEEE Trans. Biomed. Eng. 2010;57:1062–1069. doi: 10.1109/TBME.2009.2037492. PubMed DOI

Lipponen J.A., Gladwell V.F., Kinnunen H., Karjalainen P.A., Tarvainen M.P. The Correlation of Vectorcardiographic Changes to Blood Lactate Concentration during an Exercise Test. Biomed. Signal Process. Control. 2013;8:491–499. doi: 10.1016/j.bspc.2013.05.002. DOI

Kahankova R., Jaros R., Martinek R., Jezewski J., Wen H., Jezewski M., Kawala-Janik A. Non-Adaptive Methods of Fetal ECG Signal Processing. Adv. Electr. Electron. Eng. 2017;15:476–490. doi: 10.15598/aeee.v15i3.2196. DOI

Jagannath D., Selvakumar A.I. Issues and Research on Foetal Electrocardiogram Signal Elicitation. Biomed. Signal Process. Control. 2014;10:224–244. doi: 10.1016/j.bspc.2013.11.001. DOI

Clifford G.D., Silva I., Behar J., Moody G.B. Non-Invasive Fetal ECG Analysis. Physiol. Meas. 2014;35:1521–1536. doi: 10.1088/0967-3334/35/8/1521. PubMed DOI PMC

Jezewski J., Matonia A., Kupka T., Roj D., Czabanski R. Determination of Fetal Heart Rate from Abdominal Signals: Evaluation of Beat-to-Beat Accuracy in Relation to the Direct Fetal Electrocardiogram. Biomed. Tech. Eng. 2012;57 doi: 10.1515/bmt-2011-0130. PubMed DOI

Kotas M., Jezewski J., Matonia A., Kupka T. Towards Noise Immune Detection of Fetal QRS Complexes. Comput. Methods Programs Biomed. 2010;97:241–256. doi: 10.1016/j.cmpb.2009.09.005. PubMed DOI

Jezewski J., Wrobel J., Horoba K. Comparison of Doppler Ultrasound and Direct Electrocardiography Acquisition Techniques for Quantification of Fetal Heart Rate Variability. IEEE Trans. Biomed. Eng. 2006;53:855–864. doi: 10.1109/TBME.2005.863945. PubMed DOI

Cohen W.R., Hayes-Gill B. Influence of Maternal Body Mass Index on Accuracy and Reliability of External Fetal Monitoring Techniques. Acta Obstet. Gynecol. Scand. 2014;93:590–595. doi: 10.1111/aogs.12387. PubMed DOI

Sänger N., Hayes-Gill B., Schiermeier S., Hatzmann W., Yuan J., Herrmann E., Louwen F., Reinhard J. Prenatal Foetal Non-invasive ECG instead of Doppler CTG—A Better Alternative? Geburtshilfe Und Frauenheilkd. 2012;72:630–633. doi: 10.1055/s-0032-1315012. PubMed DOI PMC

Jaros R., Martinek R., Kahankova R., Koziorek J. Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram. IEEE Access. 2019;7:131758–131784. doi: 10.1109/ACCESS.2019.2933717. DOI

Liu G., Luan Y. An Adaptive Integrated Algorithm for Noninvasive Fetal ECG Separation and Noise Reduction Based on ICA-EEMD-WS. Med. Biol. Eng. Comput. 2015;53:1113–1127. doi: 10.1007/s11517-015-1389-1. PubMed DOI

Gupta A., Srivastava M.C., Khandelwal V., Gupta A. A Novel Approach to Fetal ECG Extraction and Enhancement Using Blind Source Separation (BSS-ICA) and Adaptive Fetal ECG Enhancer (AFE); Proceedings of the 2007 6th International Conference on Information, Communications & Signal Processing; Singapore. 10–13 December 2007; pp. 1–4. DOI

Martín-Clemente R., Camargo-Olivares J.L., Hornillo-Mellado S., Elena M., Román I. Fast Technique for Noninvasive Fetal ECG Extraction. IEEE Trans. Biomed. Eng. 2011;58:227–230. doi: 10.1109/TBME.2010.2059703. PubMed DOI

Gao P., Chang E.C., Wyse L. Blind Separation of Fetal ECG from Single Mixture Using SVD and ICA; Proceedings of the Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia, Proceedings of the 2003 Joint; Singapore. 15–18 December 2003; pp. 1418–1422. DOI

Jang J.S. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man, Cybern. 1993;23:665–685. doi: 10.1109/21.256541. DOI

Swarnalath R., Prasad D. Maternal ECG Cancellation in Abdominal Signal Using ANFIS and Wavelets. J. Appl. Sci. 2010;10:868–877. doi: 10.3923/jas.2010.868.877. DOI

Assaleh K. Adaptive Neuro-Fuzzy Inference Systems for Extracting Fetal Electrocardiogram; Proceedings of the 2006 IEEE International Symposium on Signal Processing and Information Technology; Vancouver, BC, Canada. 27–30 August 2006; pp. 122–126. DOI

Jothi S., Prabha K. Fetal Electrocardiogram Extraction Using Adaptive Neuro-Fuzzy Inference Systems and Undecimated Wavelet Transform. IETE J. Res. 2012;58:469. doi: 10.4103/0377-2063.106753. DOI

Camps G., Martinez M., Soria E. Fetal ECG Extraction Using an FIR Neural Network; Proceedings of the Computers in Cardiology 2001, Volume 28 (Cat. No. 01CH37287); Rotterdam, The Netherlands. 23–26 September 2001; pp. 249–252. DOI

Sehamby R., Singh B. Noise Cancellation Using Adaptive Filtering in ECG Signals: Application to Biotelemetry. Int. J. Bio-Sci. Bio-Technol. 2016;8:237–244. doi: 10.14257/ijbsbt.2016.8.2.22. DOI

Zeng Y., Liu S., Zhang J. Extraction of Fetal ECG Signal via Adaptive Noise Cancellation Approach; Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering; Shanghai, China. 16–18 May 2008; pp. 2270–2273. DOI

Liu S.J., Liu D.L., Zhang J.Q., Zeng Y.J. Extraction of Fetal Electrocardiogram Using Recursive Least Squares and Normalized Least Mean Squares Algorithms; Proceedings of the 2011 3rd International Conference on Advanced Computer Control; Harbin, China. 18–20 January 2011; pp. 333–336. DOI

Kahankova R., Martinek R., Bilik P. Fetal ECG Extraction from Abdominal ECG Using RLS Based Adaptive Algorithms; Proceedings of the 2017 18th International Carpathian Control Conference (ICCC); Sinaia, Romania. 28–31 May 2017; pp. 337–342. DOI

Karvounis E., Papaloukas C., Fotiadis D., Michalis L. Computers in Cardiology 2004. IEEE; Chicago, IL, USA: 2004. Fetal Heart Rate Extraction from Composite Maternal ECG Using Complex Continuous Wavelet Transform; pp. 737–740. DOI

Hassanpour H., Parsaei A. Fetal ECG Extraction Using Wavelet Transform; Proceedings of the 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA’06); Sydney, NSW, Australia. 28 November–1 December 2006; p. 179. DOI

Desai K.D., Sankhe M.S. A Real-Time Fetal ECG Feature Extraction Using Multiscale Discrete Wavelet Transform; Proceedings of the 2012 5th International Conference on BioMedical Engineering and Informatics; Chongqing, China. 16–18 October 2012; pp. 407–412. DOI

Agostinelli A., Sbrollini A., Burattini L., Fioretti S., Di Nardo F., Burattini L. Noninvasive Fetal Electrocardiography Part II: Segmented-Beat Modulation Method for Signal Denoising. Open Biomed. Eng. J. 2017;11:25–35. doi: 10.2174/1874120701711010025. PubMed DOI PMC

Lipponen J.A., Tarvainen M.P. Advanced Maternal ECG Removal and Noise Reduction for Application of Fetal QRS Detection; Proceedings of the Computing in Cardiology 2013; Zaragoza, Spain. 22–25 September 2013; pp. 161–164.

Matonia A., Jezewski J., Horoba K., Gacek A., Labaj P. The Maternal ECG Suppression Algorithm for Efficient Extraction of the Fetal ECG from Abdominal Signal; Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; New York, NY, USA. 30 August–3 September 2006; pp. 3106–3109. PubMed DOI

Goldberger A.L., Amaral L.A.N., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101 doi: 10.1161/01.CIR.101.23.e215. PubMed DOI

Silva I., Behar J., Sameni R., Zhu T., Oster J., Clifford G.D., Moody G.B. Noninvasive Fetal ECG: The PhysioNet/Computing in Cardiology Challenge 2013; Proceedings of the Computing in Cardiology 2013; Zaragoza, Spain. 22–25 September 2013; pp. 149–152. PubMed PMC

Ghosh P.K., Poonia D. Comparison of Some EMD Based Technique for Baseline Wander Correction in Fetal ECG Signal. Int. J. Comput. Appl. 2015;116:48–52.

Ghobadi Azbari P., Abdolghaffar M., Mohaqeqi S., Pooyan M., Ahmadian A., Ghanbarzadeh Gashti N. A Novel Approach to the Extraction of Fetal Electrocardiogram Based on Empirical Mode Decomposition and Correlation Analysis. Australas. Phys. Eng. Sci. Med. 2017;40:565–574. doi: 10.1007/s13246-017-0560-4. PubMed DOI

Manorost P., Theera-Umpon N., Auephanwiriyakul S. Fetal Electrocardiogram Extraction by Independent Component Analysis; Proceedings of the 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE); Penang, Malaysia. 24–26 November 2017; pp. 220–225. DOI

John S.T., Goyal M., Singh S., Mukherjee A. Ambulatory Fetal Heart Monitoring with QRS Detection Employing Independent Component Analysis; Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP); Cochin, India. 14–16 July 2017; pp. 1–4. DOI

Kotas M., Giraldo J., Contreras-Ortiz S.H., Lasprilla G.I.B. Fetal ECG Extraction Using Independent Component Analysis by Jade Approach. In: Brieva J., García J.D., Lepore N., Romero E., editors. Proceedings of the 13th International Conference on Medical Information Processing and Analysis; San Andres Island, Colombia. 5–7 October 2017; San Andres Island, Colombia: SPIE; 2017. p. 55. DOI

Bacharakis E., Nandi A.K., Zarzoso V. Foetal ECG Extraction Using Blind Source Separation Methods; Proceedings of the 1996 8th European Signal Processing Conference (EUSIPCO 1996); Trieste, Italy. 10–13 September 1996; pp. 1–4.

Petrolis R., Krisciukaitis A. Multi Stage Principal Component Analysis Based Method for Detection of Fetal Heart Beats in Abdominal ECGs; Proceedings of the Computing in Cardiology 2013; Zaragoza, Spain. 22–25 September 2013; pp. 301–304.

Raj C.G., Harsha V.S., Gowthami B.S., Sunitha R. Virtual Instrumentation Based Fetal ECG Extraction. Procedia Comput. Sci. 2015;70:289–295. doi: 10.1016/j.procs.2015.10.093. DOI

Alvarez L.O.S., Gonzalez A., Millet J. Hybrid BSS Techniques for Fetal ECG Extraction Using a Semi-Synthetic Database; Proceedings of the 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA); Bogota, Colombia. 2–4 September 2015; pp. 1–6. DOI

Billeci L., Varanini M. A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads. Sensors. 2017;17:1135. doi: 10.3390/s17051135. PubMed DOI PMC

Panigrahy D., Sahu P.K. Extraction of Fetal Electrocardiogram (ECG) by Extended State Kalman Filtering and Adaptive Neuro-Fuzzy Inference System (ANFIS) Based on Single Channel Abdominal Recording. Sadhana. 2015;40:1091–1104. doi: 10.1007/s12046-015-0381-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...